Câu hỏi:

29/01/2026 6 Lưu

Cho đường tròn (O) đường kính AB và một điểm C di động trên nửa đường tròn đó. Vẽ đường tròn (I) tiếp xúc với đường tròn (O) tại C và tiếp xúc với đường kính AB tại D, đường tròn này cắt CA và CB lần lượt tại các điểm thứ hai là M và N.

Chứng minh rằng:

a) Ba điểm M, I, N thẳng hàng.

b) ID \( \bot \)MN.

c) Đường thẳng CD đi qua một điểm cố định, từ đó suy ra cách dựng đường tròn I nói trên.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a.   Cho đường tròn (O) đường kính AB và một điểm C di động trên nửa đường tròn đó. Vẽ đường tròn (I) tiếp xúc với đường tròn (O) tại C và tiếp xúc với đường kính AB tại D, đường tròn này cắt CA và CB lần lượt tại các điểm thứ hai là M và N. (ảnh 1)

a.  Xét đường tròn \(\left( O \right)\) có \(\widehat {ACB} = 90^\circ ,\) suy ra \(\widehat {MCN} = 90^\circ .\)

Xét đường tròn \(\left( I \right)\) có \(\widehat {MCN} = 90^\circ ,\) suy ra \(M,I,N\) thẳng hàng.

b.    Đường tròn \(\left( O \right)\) và \(\left( I \right)\) tiếp xúc với nhau tại \(C\) suy ra \(O,I,C\) thẳng hàng.

\(\Delta ICN\) cân\( \Rightarrow \widehat {INC} = \widehat {ICN;}\)

\(\Delta OCB\) cân\( \Rightarrow \widehat {OBC} = \widehat {OCB}.\)

Suy ra \(\widehat {INC} = \widehat {OBC,}\) dẫn tới \(MN\)//\(AB\) (vì có cặp góc đồng vị bằng nhau).

Ta có \(ID \bot AB\)(tính chất của tiếp tuyến), do đó \(ID \bot MN.\)

c.     Ta có   suy ra \(\widehat {MCD} = \widehat {NCD.}\) Gọi \(E\) là giao điểm của đường thẳng \(CD\) với đường tròn \(\left( O \right)\), ta được 

Vậy \(E\) là điểm chính giữa của nửa đường tròn đường kính \(AB\) (nửa này không chứa điểm \(C\)). Do đó đường thẳng \(CD\)CD luôn đi qua một điểm cố định. Ta suy ra cách dựng đường tròn \(\left( I \right)\) như sau:

-       Dựng bán kính \(OE \bot AB\) (\(E\) thuộc nửa đường tròn không chứa \(C).\)

-       Nối \(CE\) cắt \(AB\) tại \(D.\)

-       Từ điểm \(D\) dựng một đường thẳng vuông góc với \(AB\) cắt \(OC\) tại \(I.\)

-       Dựng đường tròn \(\left( {I;ID} \right)\) đó là đường tròn phải dựng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a. Cho đường tròn (O) đường kính AB, M là điểm chính giữa của một nửa đường tròn, C là điểm bất kì trên nửa đường tròn kia, CM cắt AB tại D. Vẽ dây AE vuông góc với CM tại F.  a) Chứng minh rằng tứ giác ACEM là hình thang cân. (ảnh 1)

a.   Ta có 

Suy ra  do các tam giác \(\Delta FAC\) và \(\Delta FEM\) vuông cân tại \(F,\) do đó \(AE = CM.\) Ta có \(\widehat {CAE} = \widehat {AEM}\left( { = 45^\circ } \right)\)

\( \Rightarrow AC\)//\(ME\), dẫn tới từ giác \(ACEM\) là hình thang cân.

b.    Ta có \(CH\)//\(OM \Rightarrow \widehat {HCM} = \widehat {OMC}.\)

Mặt khác, \(\widehat {OCM} = \widehat {OMC}\)

suy ra \(\widehat {HCM} = \widehat {OCM} \Rightarrow \)Tia \(CO\) là tia phân giác của góc \(HCO\).

c.      

\( \Rightarrow \frac{{CD}}{{MD}} = \frac{{CH}}{{MO}} = \frac{{DH}}{{DO}} \le 1 \Rightarrow CD \le MD\) hay \(CD \le \frac{1}{2}CM.\) Do đó \(CD \le \frac{1}{2}AE.\)

Lời giải

Cho tam giác \[ABC{\rm{ } (ảnh 1)

Mặt khác, \(\widehat {MAN} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)
Mà \(AM\) là phân giác trong góc A, nên AN là phân giác ngoài góc A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP