Cho đường tròn (O) và hai dây MA, MB vuông góc với nhau. Gọi I và K lần lượt là điểm chính giữa của các cung nhỏ MA, MB. Gọi P là giao điểm của AK và BI.
a) Chứng minh rằng ba điểm A, O, B thẳng hàng.
b) Chứng minh rằng P là tâm đường tròn nội tiếp ∆MAB.
c*) Giả sử MA = 12 cm, MB = 16 cm, tính bán kính của đường tròn nội tiếp ∆MAB.
Cho đường tròn (O) và hai dây MA, MB vuông góc với nhau. Gọi I và K lần lượt là điểm chính giữa của các cung nhỏ MA, MB. Gọi P là giao điểm của AK và BI.
a) Chứng minh rằng ba điểm A, O, B thẳng hàng.
b) Chứng minh rằng P là tâm đường tròn nội tiếp ∆MAB.
c*) Giả sử MA = 12 cm, MB = 16 cm, tính bán kính của đường tròn nội tiếp ∆MAB.
Quảng cáo
Trả lời:

a. \[\widehat {AOB} = 2.\widehat {AMB} = 2.90^\circ = 180^\circ \Rightarrow A,O,B\]thẳng hàng.
b. Ta có \[\widehat {KAM} = \widehat {KAB};\widehat {IBM} = \widehat {IBA}\] (hai góc nội tiếp chắn hai cung bằng nhau).
Vậy \(AK,BI\) là hai đường phân giác của \(\Delta MAB.\)Giao điểm \(P\) của hai đường phân giác này là tâm đường tròn nội tiếp \(\Delta MAB.\)
c. Gọi \(r\) là bán kính của đường tròn nội tiếp \(\Delta MAB,{\rm{ }}a\) là cạnh huyền và \(p\)là nửa chu vi của tam giác đó.
Ta có \(r = p - a\) (xem bài 6.5 chương Đường tròn).
Áp dụng định lý Pythagore vào tam giác vuông \(MAB\) ta tính được \(AB = 20\)cm.
Từ đó suy ra \(r = 24 - 20 = 4\)(cm).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a. 
a. Xét đường tròn \(\left( O \right)\) có \(\widehat {ACB} = 90^\circ ,\) suy ra \(\widehat {MCN} = 90^\circ .\)
Xét đường tròn \(\left( I \right)\) có \(\widehat {MCN} = 90^\circ ,\) suy ra \(M,I,N\) thẳng hàng.
b. Đường tròn \(\left( O \right)\) và \(\left( I \right)\) tiếp xúc với nhau tại \(C\) suy ra \(O,I,C\) thẳng hàng.
\(\Delta ICN\) cân\( \Rightarrow \widehat {INC} = \widehat {ICN;}\)
\(\Delta OCB\) cân\( \Rightarrow \widehat {OBC} = \widehat {OCB}.\)
Suy ra \(\widehat {INC} = \widehat {OBC,}\) dẫn tới \(MN\)//\(AB\) (vì có cặp góc đồng vị bằng nhau).
Ta có \(ID \bot AB\)(tính chất của tiếp tuyến), do đó \(ID \bot MN.\)
c. Ta có suy ra \(\widehat {MCD} = \widehat {NCD.}\) Gọi \(E\) là giao điểm của đường thẳng \(CD\) với đường tròn \(\left( O \right)\), ta được
Vậy \(E\) là điểm chính giữa của nửa đường tròn đường kính \(AB\) (nửa này không chứa điểm \(C\)). Do đó đường thẳng \(CD\)CD luôn đi qua một điểm cố định. Ta suy ra cách dựng đường tròn \(\left( I \right)\) như sau:
- Dựng bán kính \(OE \bot AB\) (\(E\) thuộc nửa đường tròn không chứa \(C).\)
- Nối \(CE\) cắt \(AB\) tại \(D.\)
- Từ điểm \(D\) dựng một đường thẳng vuông góc với \(AB\) cắt \(OC\) tại \(I.\)
- Dựng đường tròn \(\left( {I;ID} \right)\) đó là đường tròn phải dựng.
Lời giải

Mà \(AM\) là phân giác trong góc A, nên AN là phân giác ngoài góc A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.