Cho tam giác ABC cân tại A (\(\hat A < {90^o}\)) . Vẽ đường tròn đường kính AB cắt BC tại D, cắt AC tại E. Chứng minh rằng:
a) Tam giác DBE cân; b) \(\widehat {CBE} = \frac{1}{2}\widehat {BAC}\)
Cho tam giác ABC cân tại A (\(\hat A < {90^o}\)) . Vẽ đường tròn đường kính AB cắt BC tại D, cắt AC tại E. Chứng minh rằng:
a) Tam giác DBE cân; b) \(\widehat {CBE} = \frac{1}{2}\widehat {BAC}\)
Quảng cáo
Trả lời:

a. \(\widehat {ADB} = 90^\circ \Rightarrow AD \bot BC,\) do đó \(AD\) cũng là đường phân giác, suy ra cân.
b. \({\widehat B_1} = \widehat {{A_2}}\) (hai góc nội tiếp cùng chắn cung \(DE\))\( \Rightarrow {\widehat B_1} = \frac{1}{2}\widehat {BAC}.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a. 
a. Ta có
Suy ra do các tam giác \(\Delta FAC\) và \(\Delta FEM\) vuông cân tại \(F,\) do đó \(AE = CM.\) Ta có \(\widehat {CAE} = \widehat {AEM}\left( { = 45^\circ } \right)\)
\( \Rightarrow AC\)//\(ME\), dẫn tới từ giác \(ACEM\) là hình thang cân.
b. Ta có \(CH\)//\(OM \Rightarrow \widehat {HCM} = \widehat {OMC}.\)
Mặt khác, \(\widehat {OCM} = \widehat {OMC}\)
suy ra \(\widehat {HCM} = \widehat {OCM} \Rightarrow \)Tia \(CO\) là tia phân giác của góc \(HCO\).
c.
\( \Rightarrow \frac{{CD}}{{MD}} = \frac{{CH}}{{MO}} = \frac{{DH}}{{DO}} \le 1 \Rightarrow CD \le MD\) hay \(CD \le \frac{1}{2}CM.\) Do đó \(CD \le \frac{1}{2}AE.\)
Lời giải

Mà \(AM\) là phân giác trong góc A, nên AN là phân giác ngoài góc A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.