Câu hỏi:

29/01/2026 132 Lưu

Cho tam giác ABC cân tại A (\(\hat A < {90^o}\)) . Vẽ đường tròn đường kính AB cắt BC tại D, cắt AC tại E. Chứng minh rằng:

a) Tam giác DBE cân;                                             b) \(\widehat {CBE} = \frac{1}{2}\widehat {BAC}\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tam giác ABC cân tại A (ảnh 1)

a.     \(\widehat {ADB} = 90^\circ  \Rightarrow AD \bot BC,\) do đó \(AD\) cũng là đường phân giác, suy ra cân.

 b.   \({\widehat B_1} = \widehat {{A_2}}\) (hai góc nội tiếp cùng chắn cung \(DE\))\( \Rightarrow {\widehat B_1} = \frac{1}{2}\widehat {BAC}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a.   Cho đường tròn (O) đường kính AB và một điểm C di động trên nửa đường tròn đó. Vẽ đường tròn (I) tiếp xúc với đường tròn (O) tại C và tiếp xúc với đường kính AB tại D, đường tròn này cắt CA và CB lần lượt tại các điểm thứ hai là M và N. (ảnh 1)

a.  Xét đường tròn \(\left( O \right)\) có \(\widehat {ACB} = 90^\circ ,\) suy ra \(\widehat {MCN} = 90^\circ .\)

Xét đường tròn \(\left( I \right)\) có \(\widehat {MCN} = 90^\circ ,\) suy ra \(M,I,N\) thẳng hàng.

b.    Đường tròn \(\left( O \right)\) và \(\left( I \right)\) tiếp xúc với nhau tại \(C\) suy ra \(O,I,C\) thẳng hàng.

\(\Delta ICN\) cân\( \Rightarrow \widehat {INC} = \widehat {ICN;}\)

\(\Delta OCB\) cân\( \Rightarrow \widehat {OBC} = \widehat {OCB}.\)

Suy ra \(\widehat {INC} = \widehat {OBC,}\) dẫn tới \(MN\)//\(AB\) (vì có cặp góc đồng vị bằng nhau).

Ta có \(ID \bot AB\)(tính chất của tiếp tuyến), do đó \(ID \bot MN.\)

c.     Ta có   suy ra \(\widehat {MCD} = \widehat {NCD.}\) Gọi \(E\) là giao điểm của đường thẳng \(CD\) với đường tròn \(\left( O \right)\), ta được 

Vậy \(E\) là điểm chính giữa của nửa đường tròn đường kính \(AB\) (nửa này không chứa điểm \(C\)). Do đó đường thẳng \(CD\)CD luôn đi qua một điểm cố định. Ta suy ra cách dựng đường tròn \(\left( I \right)\) như sau:

-       Dựng bán kính \(OE \bot AB\) (\(E\) thuộc nửa đường tròn không chứa \(C).\)

-       Nối \(CE\) cắt \(AB\) tại \(D.\)

-       Từ điểm \(D\) dựng một đường thẳng vuông góc với \(AB\) cắt \(OC\) tại \(I.\)

-       Dựng đường tròn \(\left( {I;ID} \right)\) đó là đường tròn phải dựng.

Lời giải

Cho tam giác \[ABC{\rm{ } (ảnh 1)

Mặt khác, \(\widehat {MAN} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)
Mà \(AM\) là phân giác trong góc A, nên AN là phân giác ngoài góc A