Câu hỏi:

29/01/2026 16 Lưu

Cho tam giác \[ABC{\rm{ }}\left( {AB < AC} \right)\]nội tiếp đường tròn (O) . Vẽ đường kính MN \( \bot \)BC (điểm M thuộc cung BC không chứa A) . Chứng minh rằng các tia AM, AN lần lượt là các tia phân giác trong và ngoài tại đỉnh A của ∆ABC.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tam giác \[ABC{\rm{ } (ảnh 1)

Mặt khác, \(\widehat {MAN} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn)
Mà \(AM\) là phân giác trong góc A, nên AN là phân giác ngoài góc A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a. Cho đường tròn (O) đường kính AB, M là điểm chính giữa của một nửa đường tròn, C là điểm bất kì trên nửa đường tròn kia, CM cắt AB tại D. Vẽ dây AE vuông góc với CM tại F.  a) Chứng minh rằng tứ giác ACEM là hình thang cân. (ảnh 1)

a.   Ta có 

Suy ra  do các tam giác \(\Delta FAC\) và \(\Delta FEM\) vuông cân tại \(F,\) do đó \(AE = CM.\) Ta có \(\widehat {CAE} = \widehat {AEM}\left( { = 45^\circ } \right)\)

\( \Rightarrow AC\)//\(ME\), dẫn tới từ giác \(ACEM\) là hình thang cân.

b.    Ta có \(CH\)//\(OM \Rightarrow \widehat {HCM} = \widehat {OMC}.\)

Mặt khác, \(\widehat {OCM} = \widehat {OMC}\)

suy ra \(\widehat {HCM} = \widehat {OCM} \Rightarrow \)Tia \(CO\) là tia phân giác của góc \(HCO\).

c.      

\( \Rightarrow \frac{{CD}}{{MD}} = \frac{{CH}}{{MO}} = \frac{{DH}}{{DO}} \le 1 \Rightarrow CD \le MD\) hay \(CD \le \frac{1}{2}CM.\) Do đó \(CD \le \frac{1}{2}AE.\)

Lời giải

Cho đường tròn (O; R) . Vẽ dây \({\rm{AB  =  R}}\sqrt {\rm{2}} \). Tính số đo của hai cung AB. (ảnh 1)

Xét \(\Delta AOB\) có

\(\begin{array}{l}O{A^2} + O{B^2} = {R^2} + {R^2} = 2{R^2}\\A{B^2} = {\left( {R\sqrt 2 } \right)^2} = 2{R^2}\end{array}\)

Vậy \(\Delta AOB\) vuông tại \(O.\)

Do đó sđ AB=90°;Số đo cung lớn AB=270°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP