Cho hàm số \(y = f\left( x \right)\) có \(f\left( 0 \right) = 0\) và \(f'\left( x \right) = {\sin ^8}x - {\cos ^8}x - 4{\sin ^6}x,{\rm{ }}\forall x \in \mathbb{R}\). Kết quả của tích phân \(I = \int\limits_0^\pi {8f\left( x \right){\rm{d}}x} \) được cho dưới dạng \(a{\pi ^2}\). Tìm giá trị của \(a\).
Câu hỏi trong đề: Đề kiểm tra Tích phân (có lời giải) !!
Quảng cáo
Trả lời:
Đáp án:
Ta có: \({\sin ^8}x - {\cos ^8}x - 4{\sin ^6}x = \left( {{{\sin }^4}x - {{\cos }^4}x} \right)\left( {{{\sin }^4}x + {{\cos }^4}x} \right) - 4{\sin ^6}x\)
\( = \left( {{{\sin }^2}x - {{\cos }^2}x} \right)\left( {{{\sin }^4}x + {{\cos }^4}x} \right) - 4{\sin ^6}x\)
\( = {\cos ^4}x.{\sin ^2}x - {\sin ^4}x.{\cos ^2}x - {\cos ^6}x - 3{\sin ^6}x\)
\( = {\cos ^4}x.{\sin ^2}x - {\sin ^4}x.{\cos ^2}x - 2{\sin ^6}x - \left( {{{\cos }^6}x + {{\sin }^6}x} \right)\)
\( = {\sin ^2}x\left( {{{\cos }^4}x - {{\sin }^4}x} \right) - {\sin ^4}x\left( {{{\cos }^2}x + {{\sin }^2}x} \right) - \left( {1 - 3{{\cos }^2}x.{{\sin }^2}x} \right)\)
\( = 4{\cos ^2}x.{\sin ^2}x - 2{\sin ^4}x - 1\)
\( = - \frac{3}{4}\cos 4x + \cos 2x - \frac{5}{4}\).
Do đó \(f\left( x \right) = \int {f'\left( x \right){\rm{d}}x} = \int {\left( { - \frac{3}{4}\cos 4x + \cos 2x - \frac{5}{4}} \right){\rm{d}}x} = - \frac{3}{{16}}\sin 4x + \frac{1}{2}\sin 2x - \frac{5}{4}x + C\)
Vì \(f\left( 0 \right) = 0\) nên \( - \frac{3}{{16}}\sin 4.0 + \frac{1}{2}\sin 2.0 - \frac{5}{4}.0 + C = 0 \Leftrightarrow C = 0\).
Vậy \(f\left( x \right) = - \frac{3}{{16}}\sin 4x + \frac{1}{2}\sin 2x - \frac{5}{4}x\).
Ta có \(I = \int\limits_0^\pi {8f\left( x \right){\rm{d}}x} \)
\(\begin{array}{l} = \int\limits_0^\pi {8\left( { - \frac{3}{{16}}\sin 4x + \frac{1}{2}\sin 2x - \frac{5}{4}x} \right){\rm{d}}x} \\ = \int\limits_0^\pi {\left( { - \frac{3}{2}\sin 4x + 4\sin 2x - 10x} \right){\rm{d}}x} \\ = \left. {\left( {\frac{3}{8}\cos 4x - 2\cos 2x - 5{x^2}} \right)} \right|_0^\pi = - 5{\pi ^2}\end{array}\)
Vậy \(a = - 5\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Từ giả thiết \[f(x) + x\left( {{f^\prime }(x) - 2\sin x} \right) = {x^2}\cos x\]
\[\begin{array}{l} \Leftrightarrow f(x) + x{f^\prime }(x) = {x^2}\cos x + 2x\sin x\\ \Leftrightarrow {\left( {xf\left( x \right)} \right)^\prime } = {\left( {{x^2}\sin x} \right)^\prime }\\ \Leftrightarrow xf\left( x \right) = {x^2}\sin x + C\end{array}\]
Mặt khác: \[f\left( {\frac{\pi }{2}} \right) = \frac{\pi }{2} \Rightarrow C = 0 \Rightarrow f\left( x \right) = x\sin x.\]
\[I = \int\limits_0^{\frac{\pi }{2}} {\frac{{f\left( x \right)}}{x}dx} = \int\limits_0^{\frac{\pi }{2}} {\frac{{x\sin x}}{x}dx} = \int\limits_0^{\frac{\pi }{2}} {\sin xdx} = 1\].Câu 2
A. \[\frac{{{\pi ^2} + 16\pi + 8\sqrt 2 - 16}}{{16}}\] .
B. \[\frac{{{\pi ^2} + 16\pi + 2\sqrt 2 - 4}}{{16}}\].
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
a) Vận tốc của chất điểm tại thời điểm \(t = 15\) là \(v\left( {15} \right) = 21\,\left( {m/s} \right)\).
b) Quãng đường chất điểm di chuyển được trong \(3\) giây đầu tiên là: \({S_1} = \int\limits_0^3 {11dt} \,\,\left( m \right)\)
c) Quãng đường chất điểm đi được trong khoảng thời gian từ \(8\)giây đến \(15\) giây bằng \(73,5\left( m \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
