Câu hỏi:

01/02/2026 12 Lưu

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\left[ {a\,;b} \right]\] có đồ thị như hình vẽ. Thể tích của khối tròn xoay khi quay hình phẳng giới hạn bởi các đường \[y = f\left( x \right),\;y = 0,\;x = a,\;x = b\] quanh trục \[{\rm{Ox}}\] được tính theo công thức nào sau đây:

Cho hàm số  y = f(x) liên tục trên [ a; b ]  có đồ thị như hình vẽ.  (ảnh 1)

A. \[S = \pi \int\limits_a^b {{f^2}\left( x \right)dx} .\]       
B. \[S = \int\limits_a^b {{f^2}\left( x \right)dx} .\]     
C. \[S = \pi \int\limits_a^b {f\left( x \right)dx} .\]     
D. \[S = \int\limits_a^b {{\pi ^2}{f^2}\left( x \right)dx} .\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Thể tích của khối tròn xoay khi quay hình phẳng giới hạn bởi các đường \[y = f\left( x \right),\;y = 0,\;\] \[x = a,\;x = b\] quanh trục \[Ox\] được tính theo công thức S=πabf2xdx.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích đáy của hình trụ là: \({\rm{S}} = \pi {x^2}\)

Dung tích của lu nước là: \(V = \pi \int\limits_0^9 \pi  {x^2}dx = 243{\pi ^2}\)\(\left( {{\rm{d}}{{\rm{m}}^3}} \right)\)

Lời giải

Dung tích nước trong chậu bằng nửa thể tích của chậu nên ta có phương trình

\(\pi \int\limits_0^x {(10 + } \sqrt x {)^2}dx = \frac{1}{2}\pi \int\limits_0^{16} {(10 + } \sqrt x {)^2}dx \Leftrightarrow \pi \left. {\left( {100x + \frac{{40}}{3}x\sqrt x  + \frac{{{x^2}}}{2}} \right)} \right|_0^x = \frac{1}{2}\pi \left. {\left( {100x + \frac{{40}}{3}x\sqrt x  + \frac{{{x^2}}}{2}} \right)} \right|_0^{16}\)

\( \Leftrightarrow 100x + \frac{{40}}{3}x\sqrt x  + \frac{{{x^2}}}{2} = \frac{{3872}}{3}\)

Đặt t =\(\sqrt x \)(t>0)

Ta được phương trình \(100{t^2} + \frac{{40}}{3}{t^3} + \frac{{{t^4}}}{2} = \frac{{3872}}{3}\). Đặt \(f(t) = 100{t^2} + \frac{{40}}{3}{t^3} + \frac{{{t^4}}}{2}\)

\(f'(t) = 200t + 40{t^2} + 2{t^3} > 0\,\,\,(\forall t > 0)\)nên \(f(t)\) đồng biến trên \((0; + \infty )\)

Do đó phương trình trên có nghiệm duy nhất t \( \approx 2,990279433\)

Vậy \(x = {t^2} \approx 8,94\)(cm)

Câu 3

a) Diện tích hình phẳng \(D\) giới hạn bởi đồ thị hàm số \(\left( C \right)\), trục tung, trục hoành  là \(\frac{3}{2} - 2\ln 2.\)

Đúng
Sai

b) Diện tích hình phẳng \(H\) giới hạn bởi đồ thị hàm số \(\left( C \right)\), đường thẳng \(d\), \(x = 1\,,\,\,x = 2\) là \(\frac{5}{2} + 2\ln \frac{3}{2}\).

Đúng
Sai

c) Thể tích của khối tròn xoay tạo thành khi quay hình phẳng \(D\) quanh trục \(Ox\) là \[\left( {\frac{{20}}{3} - 12\ln 2} \right)\pi \].

Đúng
Sai
d) Thể tích của khối tròn xoay tạo thành khi quay hình phẳng \(H\) quanh trục \(Ox\) là \[\left( {12\ln \frac{3}{2} - 1} \right)\pi .\]
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Diện tích hình học phẳng được giới hạn bới hàm số đã cho, trục hoành, \(x =  - 1\)và \(x = 1\) là  \(\frac{{{e^2} - 1}}{e}\).

Đúng
Sai

b) Với \(a = \ln 4\) thì diện tích hình học phẳng được giới hạn bới hàm số đã cho, các trục tọa độ và đường thẳng \(x = a\) bằng \(3\).

Đúng
Sai

c) Cho hình phẳng \[D\] giới hạn bởi đường cong \[y = {e^x},\] trục hoành và các đường thẳng  \[x = 0,\]\[x = 1.\] Khối tròn xoay tạo thành khi quay \[D\] quanh trục hoành có thể tích \(V\) bằng \[V = 2\pi \left( {{e^2} - 1} \right)\].

Đúng
Sai
d) Gọi \(d\) là tiếp tuyến của đồ thị hàm số \(\left( C \right)\)đã cho tại điểm \({x_0} = 0\). Diện tích hình học phẳng được giới hạn bởi đường thẳng \(d\), trục hoành , \(x =  - 1\) và \(x = 1\) là \(2\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[10 + \frac{3}{{\ln 2}}\]. 
B. \[10 - \frac{3}{{\ln 2}}\]. 
C. \[10 - \frac{4}{{\ln 2}}\].            
D. \[10 + \frac{4}{{\ln 2}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP