Câu hỏi:

01/02/2026 14 Lưu

Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm số \(y = f'\left( x \right)\) là đường cong trong hình dưới. Biết rằng diện tích của các phần hình phẳng \(A\) và \(B\) lần lượt là \({S_A} = 4\) và \({S_B} = 10\). Tính giá trị của \(f\left( 3 \right)\), biết giá trị của \(f\left( 0 \right) = 2\).

Cho hàm số y= f(x)  . Đồ thị hàm số y= f'(x)  là đường cong trong hình dưới. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

- 4

Ta có:

Hình phẳng \(A\) được giới hạn bởi đồ thị hàm số \(y = f'\left( x \right)\), trục hoành \(y = 0\), trục tung \(x = 0\) và đường thẳng \(x = 1\) nên diện tích hình phẳng \(A\) là:

\({S_A} = \int\limits_0^1 {\left| {f'\left( x \right)} \right|{\rm{ d}}x}  = \int\limits_0^1 {f'\left( x \right){\rm{ d}}x}  = \left. {f\left( x \right)} \right|_0^1 = f\left( 1 \right) - f\left( 0 \right)\)

\( \Rightarrow f\left( 1 \right) = {S_A} + f\left( 0 \right) = 4 + 2 = 6\).

Lại có:

Hình phẳng \(B\) được giới hạn bởi đồ thị hàm số \(y = f'\left( x \right)\), trục hoành \(y = 0\), đường thẳng \(x = 1\) và đường thẳng \(x = 3\) nên diện tích hình phẳng \(B\) là:

\({S_B} = \int\limits_1^3 {\left| {f'\left( x \right)} \right|{\rm{ d}}x}  =  - \int\limits_1^3 {f'\left( x \right){\rm{ d}}x}  = \left. { - f\left( x \right)} \right|_1^3 =  - \left[ {f\left( 3 \right) - f\left( 1 \right)} \right] =  - f\left( 3 \right) + f\left( 1 \right)\).

Suy ra \(f\left( 3 \right) = f\left( 1 \right) - {S_B} = 6 - 10 =  - 4\).

Vậy \(f\left( 3 \right) =  - 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích đáy của hình trụ là: \({\rm{S}} = \pi {x^2}\)

Dung tích của lu nước là: \(V = \pi \int\limits_0^9 \pi  {x^2}dx = 243{\pi ^2}\)\(\left( {{\rm{d}}{{\rm{m}}^3}} \right)\)

Lời giải

Dung tích nước trong chậu bằng nửa thể tích của chậu nên ta có phương trình

\(\pi \int\limits_0^x {(10 + } \sqrt x {)^2}dx = \frac{1}{2}\pi \int\limits_0^{16} {(10 + } \sqrt x {)^2}dx \Leftrightarrow \pi \left. {\left( {100x + \frac{{40}}{3}x\sqrt x  + \frac{{{x^2}}}{2}} \right)} \right|_0^x = \frac{1}{2}\pi \left. {\left( {100x + \frac{{40}}{3}x\sqrt x  + \frac{{{x^2}}}{2}} \right)} \right|_0^{16}\)

\( \Leftrightarrow 100x + \frac{{40}}{3}x\sqrt x  + \frac{{{x^2}}}{2} = \frac{{3872}}{3}\)

Đặt t =\(\sqrt x \)(t>0)

Ta được phương trình \(100{t^2} + \frac{{40}}{3}{t^3} + \frac{{{t^4}}}{2} = \frac{{3872}}{3}\). Đặt \(f(t) = 100{t^2} + \frac{{40}}{3}{t^3} + \frac{{{t^4}}}{2}\)

\(f'(t) = 200t + 40{t^2} + 2{t^3} > 0\,\,\,(\forall t > 0)\)nên \(f(t)\) đồng biến trên \((0; + \infty )\)

Do đó phương trình trên có nghiệm duy nhất t \( \approx 2,990279433\)

Vậy \(x = {t^2} \approx 8,94\)(cm)

Câu 3

a) Diện tích hình phẳng \(D\) giới hạn bởi đồ thị hàm số \(\left( C \right)\), trục tung, trục hoành  là \(\frac{3}{2} - 2\ln 2.\)

Đúng
Sai

b) Diện tích hình phẳng \(H\) giới hạn bởi đồ thị hàm số \(\left( C \right)\), đường thẳng \(d\), \(x = 1\,,\,\,x = 2\) là \(\frac{5}{2} + 2\ln \frac{3}{2}\).

Đúng
Sai

c) Thể tích của khối tròn xoay tạo thành khi quay hình phẳng \(D\) quanh trục \(Ox\) là \[\left( {\frac{{20}}{3} - 12\ln 2} \right)\pi \].

Đúng
Sai
d) Thể tích của khối tròn xoay tạo thành khi quay hình phẳng \(H\) quanh trục \(Ox\) là \[\left( {12\ln \frac{3}{2} - 1} \right)\pi .\]
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Diện tích hình học phẳng được giới hạn bới hàm số đã cho, trục hoành, \(x =  - 1\)và \(x = 1\) là  \(\frac{{{e^2} - 1}}{e}\).

Đúng
Sai

b) Với \(a = \ln 4\) thì diện tích hình học phẳng được giới hạn bới hàm số đã cho, các trục tọa độ và đường thẳng \(x = a\) bằng \(3\).

Đúng
Sai

c) Cho hình phẳng \[D\] giới hạn bởi đường cong \[y = {e^x},\] trục hoành và các đường thẳng  \[x = 0,\]\[x = 1.\] Khối tròn xoay tạo thành khi quay \[D\] quanh trục hoành có thể tích \(V\) bằng \[V = 2\pi \left( {{e^2} - 1} \right)\].

Đúng
Sai
d) Gọi \(d\) là tiếp tuyến của đồ thị hàm số \(\left( C \right)\)đã cho tại điểm \({x_0} = 0\). Diện tích hình học phẳng được giới hạn bởi đường thẳng \(d\), trục hoành , \(x =  - 1\) và \(x = 1\) là \(2\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[10 + \frac{3}{{\ln 2}}\]. 
B. \[10 - \frac{3}{{\ln 2}}\]. 
C. \[10 - \frac{4}{{\ln 2}}\].            
D. \[10 + \frac{4}{{\ln 2}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP