Câu hỏi:

13/07/2024 9,364 Lưu

Cho hình thang cân ABCD( AB // CD). Gọi E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác EFGH là hình gì ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Trong ABD ta có:

E là trung điểm của AB (gt)

H là trung điểm của AD (gt)

nên EH là đường trung bình của ABD

⇒ EH // BD và EH = 1/2 BD (tính chất đường trung bình của tam giác) (1)

- Trong CBD ta có:

F là trung điểm của BC (gt)

G là trung điểm của CD (gt)

nên FG là đường trung bình của CBD

⇒ FG // BD và FG = 1/2 BD (tính chất đường trung bình của tam giác) (2)

Từ (1) và (2) suy ra: EH // FG và EH = FG

Suy ra: Tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

Trong ABC ta có:

EF là đường trung bình

⇒ EF = 1/2 AC (tính chất đường trung bình của tam giác) (3)

AC = BD (tính chất hình thang cân) (4)

Từ (1), (3) và (4) suy ra: EH = EF

Vậy : Tứ giác EFGH là hình thoi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét hai tam giác vuông AHC và AKC, ta có:

(AHC) = (AKC) = 900

AH = AK (gt)

AC cạnh huyền chung

Suy ra: AHC = AKC (cạnh huyền- cạnh góc vuông)

⇒ (ACH) = (ACK) hay (ACB) = (ACD)

⇒ CA là tia phân giác (BCD)

Hình bình hành ABCD có đường chéo CA là đường phân giác nên là hình thoi.

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Nối BD, ta có AB = AD (gt)

Suy ra ABD cân tại A

A = 600 ⇒ ABD đều

⇒ (ABD) = D1600 và BD = AB

Suy ra: BD = BC = CD

CBD đều ⇒ D2600

Xét BAM và BDN,ta có:

AB = BD ( chứng minh trên)

A = D2 = 600

AM = DN (giả thiết)

Do đó BAM = BDN ( c.g.c) ⇒ B1B3 và BM = BN

Suy ra ΔBMN cân tại B.

Mà B2+B1 = (ABD) = 600

Suy ra: B2B3 = B2 + B1 = 60° hay (MBN) = 600

Vậy BMN đều

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP