Câu hỏi trong đề: Giải sbt Giải tích 12 Bài 4: Đường tiệm cận !!
Quảng cáo
Trả lời:
a) Vì
nên x = 1 là tiệm cận đứng.
Từ
Suy ra y = 1 là tiệm cận ngang.
b) Vì
và
nên x = 2 là một tiệm cận đứng.
Do
và
nên x = -2 là tiệm cận đứng thứ hai.
Ta lại có
nên y = a là tiệm cận ngang.
c) Do
nên x = 1 là tiệm cận đứng.
Mặt khác,
nên x = 3 cũng là tiệm cận đứng.
Vì
nên y = 0 là tiệm cận ngang.
d) TXĐ: R.
Từ
Ruy ra đồ thị hàm số có các tiệm cận ngang:
Đồ thị hàm số không có tiệm cận đứng.
e) TXĐ: D = (-∞; -√2) ∪ (√2;4) ∪ (4; +∞)
Do
Cho nên đồ thị hàm số có hai tiệm cận ngang
y = 4 khi x ⇒ +∞
y = 6 khi x ⇒ -∞
Vì
Cho nên đường thẳng x = 4 là tiệm cận đứng của đồ thị hàm số.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: D.
Tiệm cận đứng của đồ thị hàm số là x = 4; tiệm cận ngang của đồ thị hàm số đó là y = 3. Diện tích hình chữ nhật tạo thành là 3 x 4 = 12.
Lời giải
a) Ta có:
nên đường thẳng x = 2 là tiệm cận đứng của đồ thị hàm số.
Vì
nên đường thẳng y = 2 là tiệm cận ngang của đồ thị hàm số.
b) Từ
ta có x = −1/3 là tiệm cận đứng
Vì
nên đường thẳng y = -2/3 là tiệm cận ngang.
c) Vì
nên x = 2/3 là tiệm cận đứng.
Do
nên y = 0 là tiệm cận ngang.
d) Do
nên x = -1 là tiệm cận đứng.
Vì
nên y = 0 là tiệm cận ngang.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.