Câu hỏi:

12/06/2020 612

Tìm các tiệm cận đứng và ngang của đồ thị mỗi hàm số sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Vì

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên x = 1 là tiệm cận đứng.

Từ

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Suy ra y = 1 là tiệm cận ngang.

b) Vì

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên x = 2 là một tiệm cận đứng.

Do

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên x = -2 là tiệm cận đứng thứ hai.

Ta lại có

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên y = a là tiệm cận ngang.

c) Do

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên x = 1 là tiệm cận đứng.

Mặt khác,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên x = 3 cũng là tiệm cận đứng.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên y = 0 là tiệm cận ngang.

d) TXĐ: R.

Từ

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ruy ra đồ thị hàm số có các tiệm cận ngang:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Đồ thị hàm số không có tiệm cận đứng.

e) TXĐ: D = (-∞; -√2) ∪ (√2;4) ∪ (4; +∞)

Do

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Cho nên đồ thị hàm số có hai tiệm cận ngang

y = 4 khi x ⇒ +∞

y = 6 khi x ⇒ -∞

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Cho nên đường thẳng x = 4 là tiệm cận đứng của đồ thị hàm số.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đồ thị hàm số nào sau đây có hai tiệm cận tạo với hai trục tọa độ một tứ giác có diện tích bằng 12?

Giải sách bài tập Toán 12 | Giải sbt Toán 12

 

Xem đáp án » 13/07/2024 4,446

Câu 2:

Tìm các tiệm cận đường và ngang của đồ thị mỗi hàm số sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xem đáp án » 13/07/2024 3,914

Câu 3:

Cho hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi I là giao điểm của hai tiệm cận. Tính OI.

A. 3              B. 6

C. 5              D. 2

Xem đáp án » 13/07/2024 2,320

Câu 4:

a) Cho hàm số Giải sách bài tập Toán 12 | Giải sbt Toán 12 có đồ thị (H)

Chỉ ra một phép biến hình biến (H) thành (H’) có tiệm cận ngang y = 2 và tiệm cận đứng x = 2.

b) Lấy đối xứng (H’) qua gốc (O), ta được hình (H’’). Viết phương trình của (H’’).

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xem đáp án » 12/06/2020 688

Câu 5:

Tiệm cận đứng của đồ thị hàm số sau là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

A. x = 2              B. x = 5 hoặc x = -5

C. x = 1 hoặc x = -1              D. x = 3

Xem đáp án » 13/07/2024 669

Câu 6:

Tiệm cận ngang của đồ thị hàm số sau là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

A. y = 1              B. y = 5

C. y = 3              C. y = 10

Xem đáp án » 12/06/2020 442

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store