Câu hỏi:

13/07/2024 3,680

Cho hình 70 trong đó hai đường tròn cùng có tâm là O. Cho biết AB > CD.

Hãy so sánh các độ dài:

a) OH và OK

b) ME và MF

c) MH và MK.

Để học tốt Toán 9 | Giải bài tập Toán 9

Hình 70

 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Trong đường tròn nhỏ:

AB > CD => OH < OK (định lí 3)

b) Trong đường tròn lớn:

OH < OK => ME > MF (định lí 3)

c) Trong đường tròn lớn:

ME > MF => MH > MK

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OH ⊥ EF.

Trong tam giác vuông OHA vuông tại H có OA > OH (đường vuông góc ngắn hơn đường xiên).

Vì OA > OH nên BC < EF (định lí 3).

Lời giải

 

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OM ⊥ AB, ON ⊥ CD.

Ta thấy M, O, N thẳng hàng. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Áp dụng định lí Pitago trong tam giác vuông AMO có:

OM2 = OA2  AM2 = 252  202= 222

=> OM = √225 = 15cm

=> ON = MN – OM = 22 – 15 = 7 (cm)

Áp dụng định lí Pitago trong tam giác vuông CON có:

CN2 = CO2  ON2 = 252  72 = 576

=> CN = √576 = 24

=> CD = 2CN = 48cm