Câu hỏi:

08/09/2020 5,718

Cho hàm số f(x)=x2                   Khi x2-x22+bx-6  khi x>2      . Để hàm số này có đạo hàm tại x= 2  thì giá trị của b là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Ta có:  f(2) = 4

limx2f(x)=limx2x2=4

limx2+f(x)=limx2+x22+bx6=2b8

Vì  hàm số có đạo hàm tại x= 2 nên hàm số liên tục tại x = 2

limx2f(x)=limx2+f(x)4=2b8b=6

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 2

Lời giải

f(-1)=0 ⇒ phương án C đúng

f(x)≥0, ∀x và f(x)=0 ⇔x=-1⇒phương án D đúng

Do đó, hàm số liên tục tại điểm x = -1 

Phương án A đúng

limx1+f(x)f(1)x(1)=limx1+x+1x+1=1

limx1-f(x)f(1)x(1)=limx1--x-1x+1=-1

Suy ra không tồn tại giới hạn của tỉ số

Do đó hàm số đã cho không có đạo hàm tại x=-1.

Vậy chọn đáp án là B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP