Câu hỏi:
04/02/2021 1,138Cho hình chóp S.ABCD có ABCD là hình thang cân (AD//BC) và BC = 2AD = 2a, Gọi M, N, E lần lượt là trung điểm của AB, CD, SA. SA (ABCD) và SA = a. Khoảng cách giữa hai mặt phẳng (MNE) và (SBC) là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
+ Ta có:
d((MNE); (SBC)) = d(M; (SBC))
+ Lại có: AM (SBC) = B d(M; (SBC)) = 1/2 d(A;(SBC))
d ((MNE);(SBC)) = 1/2 d(A;(SBC))
+ Từ A hạ AF BC tại F, AG SF tại G
mà AG SF nên AG (SBC)
d(A;(SBC)) = AG
+ Tính AG
Do ABCD là hình thang cân, BC = 2a nên suy ra
AF = BF. =
Tam giác SAF vuông tại A có AG là đường cao
AG =
d ((MNE);(SBC)) = 1/2 d(A;(SBC)) = 1/2 AG = .
Đáp án C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho khối lập phương ABCDA’B’C’D’. Đoạn vuông góc chung của hai đường thẳng chéo nhau AD và A’C’ là :
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, BD = 2a; tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy, SC = a. Tính khoảng cách từ điểm B đến mặt phẳng (SAD).
Câu 4:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a; hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng đáy (ABC). Gọi M là trung điểm của AB; mặt phẳng qua SM và song song với BC cắt AC tại N. Biết góc giữa hai mặt phẳng (SBC) và (ABC) bằng . Khoảng cách giữa hai đường thẳng AB và SN là:
Câu 6:
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, mặt bên (SBC) vuông góc với đáy (ABC). Gọi M, N, P lần lượt là trung điểm của AB, SA, AC. Tính khoảng cách giữa hai mặt phẳng (MNP) và (SBC).
Câu 7:
Cho hình hộp thoi ABCD.A’B’C’D’ có các cạnh đều bằng a và . Tính khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’).
về câu hỏi!