Câu hỏi:
08/09/2020 797Cho các khẳng định sau:
(1) Khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại.
(2) Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác.
(3) Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một mặt phẳng khác.
(4) Đường thẳng nào vuông góc với cả hai đường thẳng chéo nhau cho trước là đường vuông góc chung của hai đường thẳng đó.
Trong các khẳng định trên có bao nhiêu khẳng định đúng?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Khẳng định (1) đúng vì khoảng cách của hai đường thẳng chéo nhau là đoạn ngắn nhất trong các đoạn thẳng nối hai điểm bất kì nằm trên hai đường thẳng ấy và ngược lại (xem mục c). Tính chất của khoảng cách giữa hai đường thẳng chéo nhau (Bài 5 – chương III).
Khẳng định (2) sai vì qua một điểm có vô số mặt phẳng vuông góc với một mặt phẳng cho trước.
Khẳng định (3) sai vì trong trường hợp đường thẳng vuông góc với mặt phẳng thì ta có vô số mặt phẳng vuông góc với mặt phẳng cho trước vì bất kì mặt phẳng nào chứa đường thẳng cũng đều vuông góc với mặt phẳng cho trước. Để có khẳng định đúng ta phải nói: Qua một đường thẳng không vuông góc với một mặt phẳng có duy nhất một mặt phẳng vuông góc với mặt phẳng đã cho.
Khẳng định (4) sai vì đường vuông góc chung của hai đường thẳng phải cắt cả hai đường ấy.
Vậy có một khẳng định đúng.
ĐÁP ÁN A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho khối lập phương ABCDA’B’C’D’. Đoạn vuông góc chung của hai đường thẳng chéo nhau AD và A’C’ là :
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, BD = 2a; tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy, SC = a. Tính khoảng cách từ điểm B đến mặt phẳng (SAD).
Câu 4:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a; hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng đáy (ABC). Gọi M là trung điểm của AB; mặt phẳng qua SM và song song với BC cắt AC tại N. Biết góc giữa hai mặt phẳng (SBC) và (ABC) bằng . Khoảng cách giữa hai đường thẳng AB và SN là:
Câu 6:
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, mặt bên (SBC) vuông góc với đáy (ABC). Gọi M, N, P lần lượt là trung điểm của AB, SA, AC. Tính khoảng cách giữa hai mặt phẳng (MNP) và (SBC).
Câu 7:
Một hình lập phương được tạo thành khi xếp miếng bìa carton như hình vẽ bên.
Tính khoảng cách từ điểm O đến đường thẳng AB sau khi xếp, biết rằng độ dài đoạn thẳng AB bằng 2a.
về câu hỏi!