Câu hỏi:

13/07/2024 3,451

Cho tứ giác ABCD có A^=B^ và BC = AD. Chứng minh:

a) ∆DAB = ∆CBA, từ đó suy ra BD = AC;

b) ADC^=BCD^; 

c) AB // CD

Câu hỏi trong đề:   Bài tập: Tứ giác !!

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) HS tự chứng minh

b) HS tự chứng minh

c) Sử dụng a), b) và tổng bốn góc trong tứ giác

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tứ giác ABCD, AB Cắt CD tại E, BC cắt AD tại F. Các tia phân giác của E^ và F^cắt nhau tại I. Chứng minh

a) EIF^=ABC^+ADC^2 

b) Nếu BAD^=1300 và BCD^=500thì IEIF.

Xem đáp án » 13/07/2024 16,892

Câu 2:

Cho tứ giác ABCD biết A^:B^:C^:D^ = 4:3:2:1.

a) Tính các góc của tứ giác ABCD.

b) Các tia phân giác của C^ và D^ cắt nhau tại E. Các đường phân giác của góc ngoài tại các đỉnh C và D cắt nhau tại F. Tính CED^ và CFD^.

Xem đáp án » 13/07/2024 7,750

Câu 3:

Cho tứ giác ABCD. Chứng minh:

a) Tổng hai cạnh đối nhỏ hơn tổng hai đường chéo;

b) Tổng hai đường chéo lớn hơn nửa chu vi nhưng nhỏ hơn chu vi của tứ giác ấy.

Xem đáp án » 13/07/2024 4,290

Câu 4:

Cho tứ giác ABCD và một điểm M thuộc miền trong của tứ giác. Chứng minh:

a) MA + MB + MC + MD≥ AB + CD;

b) MA + MB + MC + MD  ≥ 0.5(AB + BC + CD + DA)

Xem đáp án » 13/07/2024 2,611

Câu 5:

Cho tứ giác ABCD AB = AD, CB = CD (ta gọi tứ giác ABCD trong trường hợp này là tứ giác có hình cánh diêu).

a) Chứng minh AC là đường trung trực của BD.

b) Tính B^,D^ biết A^ = 100O, C^ = 60O

Xem đáp án » 13/07/2024 2,437

Câu 6:

a) Chứng minh trong một tứ  giác có hai đường chéo vuông góc, tổng bình phương của hai cạnh đối này bằng tổng các bình phương của hai cạnh đối kia.

b) Tứ giác ABCDAC vuông góc với BD. Biết AD = 5cm, AB = 2 cm, BC = 10 cm. Tính độ dài CD

Xem đáp án » 13/07/2024 1,686

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store