Cho đường tròn O bán kính R và hai điểm A, B nằm trên đường tròn (AB không là đường kính). Các tiếp tuyến tại A, B của đường tròn cắt nhau tại M. Kẻ cát tuyến MCD với đường tròn (C nằm giữa M và D)
a, Chứng minh các tam giác MBC và MDB đồng dạng
b, Chứng minh tứ giác MAOB là nội tiếp
c, Khi AB = R, tính bán kinh đường tròn ngoại tiếp tứ giác MAOB theo R
d, Kẻ dây AE của (O) song song với MD. Nối BE cắt MD tại I. Chứng minh I là trung điểm của CD
Câu hỏi trong đề: Chương 3 - Đề kiểm tra chương 3 !!
Quảng cáo
Trả lời:
a, Vì nên chứng minh được ∆MBC:∆MDB (g.g)
b, Vì nên tứ giác MAOB nội tiếp
c, Đường tròn đường kính OM là đường tròn ngoại tiếp tứ giác MAOB => r =
Gọi H là giao điểm của AB với OM
=> OHAB; AH = BH =
Giải tam giác vuông OAM, đường cao AH ta được OM = 2R Þ r = R
d, Ta có và
Vì AE song song CD => =>
Do tứ giác MAIB nội tiếp hay 5 điểm A, B, O, I, M nằm trên cùng 1 đường tròn kính MO
Từ đó ta có được => OICD hay I là trung điểm của CD
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a, - cung lớn; - cung nhỏ
Vì sđ + sđ = ; mà sđ = 3sđ
nên sđ = và độ dài cung là
b, Vì DOAB vuông cân => và
c, Vì AB = R => OH = (OHAB; HAB)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.