Câu hỏi:

25/11/2020 2,609

Cho tam giác ABC phân giác AD. Vẽ đường tròn (O) đi qua A, D và tiếp xúc với BC tại D. Đường tròn này cắt AB, AC lần lượt tại E và F. Chứng minh:

a, EF song song BC

b, AD2=AE.AC

c, AE.AC = AB.AF

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a, HS tự chứng minh

b, ∆ADE:∆ACD (g.g)

=> AD2=AE.AC

c, Tương tự: ∆ADF:∆ABD => AD2=AB.AF => ĐPCM

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC nội tiếp đường tròn tâm O. Các tia phân giác của các góc A và B cắt nhau ở I và cắt đường tròn theo thứ tự ở D và E. Chứng minh:

a, Tam giác BDI là tam giác cân

b, DE là đường trung trực của IC

c, IF và BC song song, trong đó F là giao điểm của DE và AC

Xem đáp án » 12/07/2024 9,016

Câu 2:

Từ điểm P ở ngoài (O), vẽ tiếp tuyến PA với đường tròn và cát tuyến PBC với P, B,C Î (O).

a, Biết PC = 25cm; PB = 49cm. Đường kính (O) là 50cm. Tính PO

b, Đường phân giác trong của góc A cắt PB ở I và cắt (O) ở D. Chứng minh DB là tiếp tuyến của đường tròn ngoại tiếp DAIB

Xem đáp án » 12/07/2024 5,470

Câu 3:

Cho (O) có hai đường kính AB CD vuông góc với nhau. Trên đường kính AB lấy điểm E sao cho AE = R2. Vẽ dây CF đi qua E. Tiếp tuyên của đường tròn tại F cắt CD tại M, vẽ dây Aỉ cắt CD tại N. Chứng minh:

a, Tia CF là tia phân giác của góc BCD

b, MF và AC song song

c, MN, OD, OM là độ dài 3 cạnh của một tam giác vuông

Xem đáp án » 12/07/2024 1,817

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store