Cho đường tròn (O) và một dây BC cố định không đi qua O. Trên tia đối của tia BC lấy một điểm A bất kì. Vẽ các tiếp tuyến AM, AN tới (O) (M, N là các tiếp điểm). MN cắt các đưòng AO và BC lần lượt ở H và K. Gọi I là trung điểm của BC
a, Chứng minh: AH.AO = AB.AC =
b, Chứng minh tứ giác BHOC nội tiếp
c, Vẽ dây MP song song với BC. Chứng minh N, I, P thẳng hàng
d, Khi A di động trên tia đôi của tia BC, chứng minh trọng tâm tam giác MBC chạy trên một đường tròn cố định
Câu hỏi trong đề: Chương 3 - Ôn tập chương 3 !!
Quảng cáo
Trả lời:
a, b, c HS tự làm
d, Gợi ý: G' ÎOI mà => G' thuộc (G';R)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a, Chứng minh được
b, (CBKH nội tiếp)
Lại có:
=>
c, Chứng minh được:
DMCA = DECB (c.g.c) => MC = CE
Ta có:
=> DMCE vuông cân tại C
d, Gọi
Chứng minh được DHKB đồng dạng với DAMB (g.g)
=> =>
Mặt khác: ∆BIK:∆BPA(g.g) => (ĐPCM)
Lời giải
a,
=> Tứ giác OEBM nội tiếp
b, Chứng minh được: ∆ABM:∆BDM (g.g) =>
c, DOBC cân tại O có OM vừa là trung trực vừa là phân giác
=>
Mà =>
d, => Tứ giác EOCM nội tiếp
=> mà 2 góc ở vị trí đồng vị => FB//AM
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.