Cho đường tròn (O) và một dây BC cố định không đi qua O. Trên tia đối của tia BC lấy một điểm A bất kì. Vẽ các tiếp tuyến AM, AN tới (O) (M, N là các tiếp điểm). MN cắt các đưòng AO và BC lần lượt ở H và K. Gọi I là trung điểm của BC
a, Chứng minh: AH.AO = AB.AC =
b, Chứng minh tứ giác BHOC nội tiếp
c, Vẽ dây MP song song với BC. Chứng minh N, I, P thẳng hàng
d, Khi A di động trên tia đôi của tia BC, chứng minh trọng tâm tam giác MBC chạy trên một đường tròn cố định
Câu hỏi trong đề: Chương 3 - Ôn tập chương 3 !!
Quảng cáo
Trả lời:
a, b, c HS tự làm
d, Gợi ý: G' ÎOI mà => G' thuộc (G';R)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a, Chứng minh được
b, (CBKH nội tiếp)
Lại có:
=>
c, Chứng minh được:
DMCA = DECB (c.g.c) => MC = CE
Ta có:
=> DMCE vuông cân tại C
d, Gọi
Chứng minh được DHKB đồng dạng với DAMB (g.g)
=> =>
Mặt khác: ∆BIK:∆BPA(g.g) => (ĐPCM)
Lời giải
a,
=> Tứ giác OEBM nội tiếp
b, Chứng minh được: ∆ABM:∆BDM (g.g) =>
c, DOBC cân tại O có OM vừa là trung trực vừa là phân giác
=>
Mà =>
d, => Tứ giác EOCM nội tiếp
=> mà 2 góc ở vị trí đồng vị => FB//AM
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.