Câu hỏi:

12/07/2024 6,364

Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB đển (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyên MNP (MN < MP) đến (O). Gọi K là trung điểm của NP

a, Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai

b, Chứng minh tia KM là phân giác của góc AKB^

c, Gọi Q là giao điểm thứ hai của BK với (O). Chứng minh AQ song song NP

d, Gọi H là giao điểm của ABMO. Chứng minh: MA2 = MH.MO = MN.MP

e, Chứng minh bốn điểm N, H, O, P cùng thuộc một đường tròn 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

HS tự chứng minh

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a, OBM^=OEM^=900

=> Tứ giác OEBM nội tiếp

b, Chứng minh được: ∆ABM:∆BDM (g.g) => MB2=MA.MB

c, DOBC cân tại O có OM vừa là trung trực vừa là phân giác

=> MOC^=12BOC^=12sđBC

Mà BFC^=12BC => MOC^=BFC^

d, OEM^=OCM^=900 => Tứ giác EOCM nội tiếp

=> MEC^=MOC^=BFC^ mà 2 góc ở vị trí đồng vị => FB//AM