Câu hỏi:

12/07/2024 3,149

Cho đường tròn (O) và một điểm M nằm bên ngoài đường tròn. Tia Mx quay quanh M và cắt đường tròn tại hai điểm A và B. Gọi I là một điểm thuộc tia Mx sao cho MI2 = MA.MB. Tìm quỹ tích điểm I.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phần thuận: Kẻ hai tiếp tuyến ME, MF tới đường tròn (O).

Ta có ME2=MF2=MA.MB=MI2 nên ME=MF=MI

Suy ra I thuộc đường tròn (M; ME)

Hạn chế quỹ tích: vì A chỉ chạy trên cung EF của đường tròn (O) nên I chỉ chạy trên cung EF của đường tròn (M,ME) nằm trong đường tròn (O)

Phần đảo: lấy điểm I thuộc EF của đường tròn (M. ME) nằm trong đường tròn (O).

Nối MI cắt đường tròn (O) tại A và B. Ta cần chứng minh MA.MB=MI2. Thật vậy, MI2=ME2=MA.MB

Kết luận: vậy quỹ tích điểm I là cung EF của đường tròn (M, ME) nằm trong đường tròn (O).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho nửa đường tròn (O) đường kính AB. Trên tia đối của tia AB lấy một điểm M. Vẽ tiếp tuyến MC với nửa đường tròn. Gọi H là hình chiếu của C trên AB.

a) Chứng minh rằng CA là tia phân giác góc MCH^

b) Giả sử MA = a, MC = 2a, tính AB và CH.

Xem đáp án » 12/07/2024 34,947

Câu 2:

Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Vẽ dây BC của đường tròn (O) tiếp xúc với đường tròn (O’). Vẽ dây BD của đường tròn (O’) tiếp xúc với đường tròn (O). Chứng minh rằng

a) AB2 = AC.AD

b) BCBD=ACAD

Xem đáp án » 12/07/2024 11,112

Câu 3:

Cho ABC ngoại tiếp đường tròn (O). Gọi D, E, F là các tiếp điểm của đường tròn trên các cạnh AB, BC, CA. Gọi M, N, P lần lượt là giao điểm của đường tròn (O) với các tia OA, OB, OC. Chứng minh rằng các điểm M, N, P lần lượt là tâm đường tròn nội tiếp các tam giác ADF, BDE, CEF

Xem đáp án » 12/07/2024 10,813

Câu 4:

Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm I có đường kính BH, nó cắt AB ở M. Vẽ đường tròn tâm K có đường kính CH, nó cắt AC ở N.

a) Tứ giác AMHN là hình gì?

b) Chứng minh rằng MN là tiếp tuyến chung của hai đường tròn (I) và (K).

c) Vẽ tiếp tuyến Ax của đường tròn ngoại tiếp ABC. Chứng minh rằng Ax song song với MN.

Xem đáp án » 12/07/2024 10,322

Câu 5:

Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Một đường thẳng tiếp xúc với đường tròn (O’) tại D. Vẽ đường tròn (I) qua ba điểm A, C, D cắt đường thẳng AB tại điểm thứ hai là E. Chứng minh rằng:

a) CAD^+CBD^=1800

b) Tứ giác BCED là hình bình hành.

Xem đáp án » 12/07/2024 8,393

Câu 6:

Cho nửa đường tròn (O) đường kính BC. Điểm A thuộc nửa đường tròn (AB < AC). Tiếp tuyến tại A cắt đường thẳng BC ở I. Kẻ AHBC. Chứng minh rằng

a) AB là tia phân giác của IAH^

b) IA2 = IB.IC

Xem đáp án » 12/07/2024 5,461

Câu 7:

Từ một điểm M nằm bên ngoài đường tròn (O) ta vẽ tiếp tuyến MT và cát tuyến MAB. Vẽ đường tròn (O’) ngoại tiếp MAT. Từ M vẽ tiếp tuyến xy của đường tròn (O’). Chứng minh rằng

a) MT2 = MA.MB

b) BT // xy

Xem đáp án » 11/07/2024 5,339

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store