Câu hỏi:

12/07/2024 18,349 Lưu

Cho đường tròn tâm O, đường kính AB cố định. H là điểm cố định thuộc đoạn OA (H không trùng O và A). Qua H vẽ đường thẳng vuông góc với AB cắt đường tròn tâm O tại C và D. Gọi K là điểm tùy ý thuộc cung lớn CD (K không trùng các điểm C, D và B). Gọi I là giao điểm của AK và CD.

a) Chứng minh tứ giác HIKB nội tiếp đường tròn.

b) Chứng minh AI.AK = AH.AB

c) Chứng minh khi điểm K thay đổi trên cung lớn CD của đường tròn tâm O thì tâm đường tròn ngoại tiếp tam giác KCI luôn thuộc một đường thẳng cố định.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có M là điểm chính giữa cung AB

AM=BMMNA^=MCB^KNI^=ICK^

Tứ giác CNKI có C và N là hai đỉnh kề nhau cùng nhìn cạnh KI dưới hai góc bằng nhau nên CNKI nội tiếp (dấu hiệu nhận biết tứ giác nội tiếp).

Do dó bốn điểm C, N, I, K cùng thuộc một đường tròn.

b) Ta có N là điểm chính giữa cung BC

nên BK // HI (2)

Từ (1) và (2) suy ra tứ giác BHIK là hình bình hành.

Mặt khác, AN, CM lần lượt là các tia phân giác của các góc A và C trong tam giác ABC nên I là giao điểm ba đường phân giác, do đó BI là tia phân giác góc B.

Vậy tứ giác BHIK là hình thoi

Do vậy D, Q, C thẳng hàng nên KQ // PK.

Chứng minh tương tự ta có D, P, B thẳng hàng và DQ // PK.

Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng.