Câu hỏi:

12/07/2024 30,869 Lưu

Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (C) tâm o bán kính R. Hai đường cao AE và BK của tam giác ABC cắt nhau tại H (với E thuộc BC, K thuộc AC)

a) Chứng minh tứ giác ABEK nội tiếp được trong một đường tròn.

b) Chứng minh CE.CB = CK.CA

c) Chứng minh OCA^=BAE^

d) Cho B, C cố định và A di động trên ( C) nhưng vẫn thỏa mãn điều kiện tam giác ABC nhọn, khi đó H thuộc một đường tròn (T) cố định. Xác định tâm I và tính bán kính r của đường tròn (T), biết R = 3 cm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

IH=OA=R=3cm => H thuộc đường tròn (I; 3cm) cố định.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có M là điểm chính giữa cung AB

AM=BMMNA^=MCB^KNI^=ICK^

Tứ giác CNKI có C và N là hai đỉnh kề nhau cùng nhìn cạnh KI dưới hai góc bằng nhau nên CNKI nội tiếp (dấu hiệu nhận biết tứ giác nội tiếp).

Do dó bốn điểm C, N, I, K cùng thuộc một đường tròn.

b) Ta có N là điểm chính giữa cung BC

nên BK // HI (2)

Từ (1) và (2) suy ra tứ giác BHIK là hình bình hành.

Mặt khác, AN, CM lần lượt là các tia phân giác của các góc A và C trong tam giác ABC nên I là giao điểm ba đường phân giác, do đó BI là tia phân giác góc B.

Vậy tứ giác BHIK là hình thoi

Do vậy D, Q, C thẳng hàng nên KQ // PK.

Chứng minh tương tự ta có D, P, B thẳng hàng và DQ // PK.

Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng.