Câu hỏi:
11/07/2024 351Cho hai đường thẳng x, y và hai điểm A, B. Dựng điểm C thuộc x và điểm D thuộc y sao cho A, B, C, D là các đỉnh của hình thang cân có AB là một cạnh đáy.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
-Phân tích:
Giả sử đã dựng được hình thang cân thỏa mãn yêu cầu đề bài. Gọi d là đường trung trực của AB. Dựng đường thẳng x’ qua D và giao điểm của d và x (nếu d//x thì x’ là đường thẳng đi qua D và song song với x). Khi đó, x’ đối xứng với x qua d. Điểm D thỏa mãn hai điều kiện: thuộc x’ và thuộc y. Từ đó dựng được điểm C.
-Cách dựng:
+ Dựng đường trung trực d của AB.
+ Dựng đường thẳng x’ đối xứng với x qua d.
+ Gọi D là giao điểm của x’ và y. Dựng C đối xứng với D qua d.
-Chứng minh:
Theo cách dựng thì AB//CD do cùng vuông góc với d. Mặt khác AC đối xứng với BD qua d nên AC = BD. Vậy tứ giác ABCD là hình thang cân.
-Biện luận:
+ Nếu x’ trùng y thì bài toán có vô số nghiệm hình. Khi đó x và x’ đối xứng nhau qua d; nói cách khác d trùng với phân giác của góc tạo bởi x và y hoặc d là đường thẳng song song cách đều x và y.
+ Nếu x’//y thì bài toán không có nghiệm hình. Khi đó d song song với một tia phân giác của góc tạo bởi x và y.
+ Nếu x’ cắt y thì bài toán có một nghiệm hình. Khi đó d cắt cả hai đường thẳng chứa tia phân giác của góc tạo bởi x và y hoặc d cắt đường thẳng song song cách đều x và y.
Riêng nếu x’ cắt y tại điểm D thuộc d, bài toán không có nghiệm hình, nếu x’ cắt y tại điểm D thẳng hàng với AB, bài toán không có nghiệm hình.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có , các đường phân giác BD và CE cắt nhau tại I. Qua E kẻ đường thẳng vuông góc với BD, cắt BC ở F. Chứng minh rằng:
1. E và F đối xứng với nhau qua BD.
2. IF là tia phân giác của góc BIC.
3. D và F đối xứng nhau qua IC.
Câu 2:
Cho đường thẳng d và hai điểm A, B nằm cùng phía với đường thẳng D. Dựng điểm C thuộc d sao cho CA + CB có độ dài ngắn nhất.
Câu 3:
Cho điểm M nằm bên trong tam giác ABC, A’ đối xứng với M qua đường phân giác của góc A, B’ đối xứng với M qua đường phân giác của góc B, C’ đối xứng với M qua đường phân giác của góc C. Chứng minh rằng các đường thẳng AA’, BB’, CC’ đồng quy hoặc song song từng đôi một.
Câu 4:
Dựng hình thang cân ABCD (AB//CD) có , biết CD = a, đường cao AH = h.
Câu 5:
Cho tam giác ABC. Vẽ các tia Ax, Ay trong góc A sao cho , vẽ các tia Bz, Bt trong góc B sao cho . Gọi E là giao điểm của Ax và Bz, gọi F là giao điểm của Ay và Bt. Chứng minh
Câu 6:
Cho đường thẳng d và hai điểm A, B nằm khác phái đối với d. Dựng điểm C thuộc d sao cho tia phân giác của góc ACB nằm trên d.
Câu 7:
Cho ba điểm O, D, E. Dựng tam giác ABC sao cho O là giao điểm của các đường phân giác BD và CE.
về câu hỏi!