Câu hỏi:

19/09/2022 2,222

Chọn ngẫu nhiên một số tự nhiên trong các số tự nhiên có bốn chữ số. Tính xác xuất để số được chọn có ít nhất hai chữ số 8 đứng liền nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án cần chọn là: A

* Gọi số tự nhiên có 4 chữ số là abcd(a≠0;0≤a, b, c, d≤9; a, b, c, d∈N)

+ a có 9 cách chọn

+b, c, d có 10 cách chọn

Không gian mẫu có số phần tử là n(Ω)=9.103

* Gọi A là biến cố số được chọn có ít nhất hai chữ số 8 đứng liền nhau

TH1: Có hai chữ số 8 đứng liền nhau. Ta chọn 2 chữ số còn lại trong abcd

+ 2 chữ số 8 đứng đầu thì có 9.10=90 cách chọn 2 chữ số còn lại

+ 2 chữ số 8 đứng ở giữa thì có 8 cách chọn chữ số hàng nghìn và 9 cách chọn chữ số hàng đơn vị nên có 8.9=72 cách chọn.

+ 2 chữ số 8 đứng ở cuối thì có 9 cách chọn chữ số hàng nghìn và 9 cách chọn chữ số hàng trăm nên có 9.9 cách chọn.

Vậy trường hợp này có 90+72+81=243 số.

TH2: Có ba chữ số 8 đứng liền nhau.

+ 3 chữ số 8 đứng đầu thì có 9 cách chọn chữ số hàng đơn vị

+ 3 chữ số 8 đứng cuối thì có 8 cách chọn chữ số hàng nghìn

Vậy trường hợp này có 9+8=17 số

TH3: Có 4 chữ số 8 đứng liền nhau thì có 1 số

Số phần tử của biến cố A là n(A)=243+17+1=261

Xác suất cần tìm là P(A)= n(A)n(Ω)=2619.103=0,029.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án cần chọn là: C

Số tự nhiên có 4 chữ số khác nhau là A74=840⇒n(S)=840.

Xét phép thử: “Chọn ngẫu nhiên một số thuộc S”. Ta có: n(Ω)= C8401=840.

Biến cố A:“số được chọn không có hai chữ số liên tiếp nào cùng chẵn”.

+ Trường hợp 1: Số được chọn có 4 chữ số đều là số lẻ, có 4!=24 cách chọn.

+ Trường hợp 2: Số được chọn có 1 chữ số chẵn và 3 chữ số lẻ

C31 cách chọn 1 chữ số chẵn và C43 cách chọn 3 chữ số lẻ. Đồng thời có 4! cách sắp xếp 4 số được chọn nên có C31.C43.4!=288 cách chọn thỏa mãn.

+ Trường hợp 3: Số được chọn có 2 chữ số chẵn và 2 chữ số lẻ.

* Chọn 2 số chẵn, 2 số lẻ trong tập hợp{1;2;3;4;5;6;7}có C32.C42 cách.

Với mỗi bộ 2 số chẵn và 2 số lẻ được chọn, để hai số chẵn không đứng cạnh nhau thì ta có các trường hợp CLCL, CLLC, LCLC. Với mỗi trường hợp trên ta có 2! cách sắp xếp 2 số lẻ và 2! cách sắp xếp các số chẵn nên có 3.2!.2! số thỏa mãn

* Suy ra trường hợp 3 có C32.C42.12=216 cách chọn.

Suy ra n(A)=24+288+216=528

Vậy xác suất cần tìm P(A)=n(A)n(Ω)=528840=2235.

Lời giải

Đáp án cần chọn là: B

- Tính xác suất để người đó gieo súc sắc thắng trong 1 ván (nghĩa là gieo được ít nhất 2 mặt 6 chấm).

Số phần tử của không gian mẫu n(Ω)=63=216

Gọi A là biến cố: “Gieo được ít nhất 2 mặt 6 chấm”

Số cách gieo được hai mặt 6 chấm là: C32.1.1.5=15 cách

Số cách gieo được ba mặt 6 chấm là: 1 cách

Số cách gieo được ít nhất 2 mặt 6 chấm là: n(A)=15+1=16 cách

Xác suất để người đó gieo thắng 1 ván là: P(A)=n(A)n(Ω)=16216=227

Do đó xác suất để thua 1 ván là 1−P(A)=1-227=2527

- Tính xác suất để người đó thắng ít nhất 2 ván.

TH1: Thắng 2 ván, thua 1 ván

Xác suất để người đó thắng 2 ván thua 1 ván là C32.227.227.2527=1006561

Xác suất để người đó thắng cả 3 ván là: 2273=819683

Theo quy tắc cộng xác suất ta có: Xác suất để người đó thắng ít nhất 2 ván là:

P=1006561+819683=30819683

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay