Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập hợp các tam giác có các đỉnh là các đỉnh của đa giác đều trên. Tính xác suất P để chọn được một tam giác từ tập X là tam giác cân nhưng không phải tam giác đều.
Quảng cáo
Trả lời:
Đáp án cần chọn là: C
+) Số phần tử của không gian mẫu: .
Gọi A là biến cố: “chọn được một tam giác từ tập X là tam giác cân nhưng không phải tam giác đều”.
Chọn 1 đỉnh bất kì làm đỉnh của tam giác cân, ta lập được 8 tam giác cân + đều.
Có 18 đỉnh như vậy ⇒ Lập được 8.18=144 tam giác cân + đều.
Ta lại có số tam giác đều có đỉnh là các đỉnh của đa giác đều 18 đỉnh là 6.
.
Vậy xác suất của biến cố A là: .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án cần chọn là: C
Số tự nhiên có 4 chữ số khác nhau là ⇒n(S)=840.
Xét phép thử: “Chọn ngẫu nhiên một số thuộc S”. Ta có: n(Ω)= .
Biến cố A:“số được chọn không có hai chữ số liên tiếp nào cùng chẵn”.
+ Trường hợp 1: Số được chọn có 4 chữ số đều là số lẻ, có 4!=24 cách chọn.
+ Trường hợp 2: Số được chọn có 1 chữ số chẵn và 3 chữ số lẻ
Có cách chọn 1 chữ số chẵn và cách chọn 3 chữ số lẻ. Đồng thời có 4! cách sắp xếp 4 số được chọn nên có cách chọn thỏa mãn.
+ Trường hợp 3: Số được chọn có 2 chữ số chẵn và 2 chữ số lẻ.
* Chọn 2 số chẵn, 2 số lẻ trong tập hợp{1;2;3;4;5;6;7}có cách.
Với mỗi bộ 2 số chẵn và 2 số lẻ được chọn, để hai số chẵn không đứng cạnh nhau thì ta có các trường hợp CLCL, CLLC, LCLC. Với mỗi trường hợp trên ta có 2! cách sắp xếp 2 số lẻ và 2! cách sắp xếp các số chẵn nên có 3.2!.2! số thỏa mãn
* Suy ra trường hợp 3 có cách chọn.
Suy ra n(A)=24+288+216=528
Vậy xác suất cần tìm P(A)=.
Lời giải
Đáp án cần chọn là: B
- Tính xác suất để người đó gieo súc sắc thắng trong 1 ván (nghĩa là gieo được ít nhất 2 mặt 6 chấm).
Số phần tử của không gian mẫu n(Ω)=
Gọi A là biến cố: “Gieo được ít nhất 2 mặt 6 chấm”
Số cách gieo được hai mặt 6 chấm là: cách
Số cách gieo được ba mặt 6 chấm là: 1 cách
Số cách gieo được ít nhất 2 mặt 6 chấm là: n(A)=15+1=16 cách
Xác suất để người đó gieo thắng 1 ván là: P(A)=
Do đó xác suất để thua 1 ván là 1−P(A)=
- Tính xác suất để người đó thắng ít nhất 2 ván.
TH1: Thắng 2 ván, thua 1 ván
Xác suất để người đó thắng 2 ván thua 1 ván là
Xác suất để người đó thắng cả 3 ván là:
Theo quy tắc cộng xác suất ta có: Xác suất để người đó thắng ít nhất 2 ván là:
P=
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.