Câu hỏi:

19/09/2022 29,719

Túi I chứa 3 bi trắng, 7 bi đỏ, 15 bi xanh. Túi II chứa 10 bi trắng, 6 bi đỏ, 9 bi xanh. Từ mỗi túi lấy ngẫu nhiên 1 viên bi. Tính xác suất để lấy được hai viên cùng màu.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

Gọi At, Ad, Ax lần lượt là biến cố bi rút được từ túi I là trắng, đỏ, xanh.

Gọi Bt, Bd, Bx lần lượt là biến cố bi rút được từ túi II là trắng, đỏ, xanh.

Các biến cố At, Ad, Ax độc lập với Bt, Bd, Bx.

Vậy xác suất để lấy được hai bi cùng màu là

P(AtBtAdBdAxBx)=P(AtBt)+P(AdBd)+P(AxBx)=P(At).P(Bt)+P(Ad).P(Bd)+P(Ax).P(Bx)=325.1025+725.625+1525.925=207625

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C.

Gọi Aj là biến cố “Xạ thủ thứ j bắn trúng”. Với j=1;3.

P(A1)=1-0,6=0,4; P(A2)=1-0,7=0,3; P(A3)=1-0,8=0,2

Gọi A là biến cố “Có ít nhất một xạ thủ bắn trúng” thì :

Biến cố đối A là không có xạ thủ nào bắn trúng.

P(A)=P(A1).P(A2).P(A3)=0,4.0,3.0,2=0,024P(A)=1-P(A)=1-0,024=0,976.

Lời giải

Chọn A

Chọn ngẫu nhiên 3 viên bi trong 15 viên bi, số cách chọn n(Ω)=C133=455..

Gọi A là biến cố " trong 3 viên bi lấy ra có ít nhất một viên bi đỏ". Các trường hợp thuận lợi cho biến cố A:

Trường hợp 1: Lấy được 1 bi đỏ và 2 bi xanh, số cách lấy C81.C72

Trường hợp 2: Lấy được 2 bi đỏ và 1 bi xanh, số cách lấy C82.C71

Trường hợp 3: Lấy được 3 bi đều đỏ, số cách lấy C83

Số trường hợp thuận lợi cho A, nA=C81.C72+C82.C71+C83=420.

Vậy P(A)=n(A)n(Ω)=420455=1213.

Cách 2: Gọi biến cố "Cả 3 bi lấy ra đều không có đỏ", nghĩa là ba bi lấy ra đều bi xanh nA=C73=35. Suy ra P(A)=1-P(A)=1-35455=1213.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP