Câu hỏi:

19/09/2022 41,842

Một lớp học có 100 học sinh, trong đó có 40 học sinh giỏi ngoại ngữ; 30 học sinh giỏi tin học và 20 học sinh giỏi cả ngoại ngữ và tin học. Học sinh nào giỏi ít nhất một trong hai môn sẽ được thêm điểm trong kết quả học tập của học kì. Chọn ngẫu nhiên một trong các học sinh trong lớp, xác suất để học sinh đó được tăng điểm là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

Gọi A là biến cố “học sinh chọn được tăng điểm”.

Gọi B là biến cố “học sinh chọn học giỏi ngoại ngữ”.

Gọi C là biến cố “học sinh chọn học giỏi tin học”.

Thì A=BC và BC là biến cố “học sinh chọn học giỏi cả ngoại ngữ lẫn tin học”.

Ta có P(A)=P(B)+P(C)-P(BC)=30100+40100-20100=12.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C.

Gọi Aj là biến cố “Xạ thủ thứ j bắn trúng”. Với j=1;3.

P(A1)=1-0,6=0,4; P(A2)=1-0,7=0,3; P(A3)=1-0,8=0,2

Gọi A là biến cố “Có ít nhất một xạ thủ bắn trúng” thì :

Biến cố đối A là không có xạ thủ nào bắn trúng.

P(A)=P(A1).P(A2).P(A3)=0,4.0,3.0,2=0,024P(A)=1-P(A)=1-0,024=0,976.

Lời giải

Chọn A

Chọn ngẫu nhiên 3 viên bi trong 15 viên bi, số cách chọn n(Ω)=C133=455..

Gọi A là biến cố " trong 3 viên bi lấy ra có ít nhất một viên bi đỏ". Các trường hợp thuận lợi cho biến cố A:

Trường hợp 1: Lấy được 1 bi đỏ và 2 bi xanh, số cách lấy C81.C72

Trường hợp 2: Lấy được 2 bi đỏ và 1 bi xanh, số cách lấy C82.C71

Trường hợp 3: Lấy được 3 bi đều đỏ, số cách lấy C83

Số trường hợp thuận lợi cho A, nA=C81.C72+C82.C71+C83=420.

Vậy P(A)=n(A)n(Ω)=420455=1213.

Cách 2: Gọi biến cố "Cả 3 bi lấy ra đều không có đỏ", nghĩa là ba bi lấy ra đều bi xanh nA=C73=35. Suy ra P(A)=1-P(A)=1-35455=1213.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP