Câu hỏi:
10/03/2021 61,342Có bao nhiêu số tự nhiên gồm 7 chữ số, biết rằng chữ số 2 có mặt hai lần, chữ số 3 có mặt ba lần và các chữ số còn lại có mặt nhiều nhất một lần?
Quảng cáo
Trả lời:
Đáp án cần chọn là: D
Gọi số tự nhiên thỏa mãn bài toán có dạng .
Xét trường hợp có cả chữ số 0 đứng đầu.
Số cách chọn vị trí cho chữ số 2 là
Số cách chọn vị trí cho chữ số 3 là
Số cách chọn 2 chữ số còn lại trong tập hợp {0;1;4;5;6;7;8;9} để xếp vào hai vị trí cuối là
Do đó có số.
Xét trường hợp chữ số 0 đứng đầu.
a=0 nên có 1 cách chọn.
Số cách chọn vị trí cho chữ số 2 là
Số cách chọn vị trí cho chữ số 3 là
Số cách chọn chữ số cuối trong tập hợp {1;4;5;6;7;8;9} là 7 cách.
Do đó có số.
Vậy có 11760−420=11340 số.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C.
Gọi số cần tìm của tập S có dạng . Trong đó .
Khi đó
- Số cách chọn chữ số a có 5 cách chọn vì .
- Số cách chọn chữ số b có 5 cách chọn vì .
- Số cách chọn chữ số c có 4 cách chọn vì và .
Do đó tập S có 5.5.4 = 100 phần tử.
Không gian mẫu là chọn ngẫu nhiên số từ tập .
Suy ra số phần tử của không gian mẫu là .
Gọi X là biến cố Số được chọn có chữ số cuối gấp đôi chữ số đầu .
Khi đó ta có các bộ số là hoặc thỏa mãn biến cố X và cứ mỗi bộ thì b có 4 cách chọn nên có tất cả 8 số thỏa yêu cầu.
Suy ra số phần tử của biến cố X là .
Vậy xác suất cần tính .
Lời giải
Chọn đáp án C
Nếu đã có nữ thì rõ ràng có nhà khoa học Toán, nếu đã có nhà khoa học Vật Lí thì chắc chắn có nam. Do đó ta chỉ cần xét các trường hợp sau:
+) Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn.
Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là .
Vậy số cách lập nhóm trong trường hợp này là: .
+) Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn.
Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là .
Vậy số cách lập nhóm trong trường hợp này là: .
Vậy số cách lập cần tìm là: .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.