Câu hỏi:

10/03/2021 5,904 Lưu

Một cửa hàng có 3 gói bim bim và 5 cốc mì ăn liền cần xếp vào giá. Hỏi có bao nhiêu cách xếp sao cho đầu hàng và cuối hàng cùng một loại?

A. 14400.

B. 17620.

C. 37440.

D. Đáp án khác.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án D

Đối với bài toán ta xét 2 trường hợp:

+) Đầu hàng và cuối hàng đều là gói bim bim:

 Số cách chọn 2 gói bim bim xếp ở vị trí đầu hàng và cuối hàng là: A32 (ở đây ta xem cách xếp 1 gói bim bim A ở đầu hàng, gói bim bim B ở cuối hàng với cách xếp gói bim bim A ở cuối hàng còn gói bim bim B ở đầu hàng là khác nhau).

Lúc này, ta còn lại 1 gói bim bim và 5 cốc mì ăn liền, số cách xếp 6 món đồ này vào 1 hàng là: 6!.

Vậy số cách xếp thỏa yêu cầu đề là: A32.6!

+) Đầu hàng và cuối hàng đều là cốc mì ăn liền:

 Số cách chọn 2 cốc mì ăn liền xếp ở vị trí đầu hàng và cuối hàng là: A52.

 Lúc này, còn lại 3 cốc mì ăn liền và 3 gói bim bim, số cách xếp 6 người này vào 1 hàng là: 6!.

Vậy số cách xếp thỏa yêu cầu đề là: A62.6!

Số cách xếp tất cả là: 6!A32+A52=18720.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án cần chọn là: D

Gọi số tự nhiên thỏa mãn bài toán có dạng abcdefg .

Xét trường hợp có cả chữ số 0 đứng đầu.

Số cách chọn vị trí cho chữ số 2 là C72

Số cách chọn vị trí cho chữ số 3 là C53

Số cách chọn 2 chữ số còn lại trong tập hợp {0;1;4;5;6;7;8;9} để xếp vào hai vị trí cuối là A82

Do đó có C72.C53.A82=11760 số.

Xét trường hợp chữ số 0 đứng đầu.

a=0 nên có 1 cách chọn.

Số cách chọn vị trí cho chữ số 2 là C62

Số cách chọn vị trí cho chữ số 3 là C43

Số cách chọn chữ số cuối trong tập hợp {1;4;5;6;7;8;9} là 7 cách.

Do đó có 1.C62.C43.7=420 số.

Vậy có 11760−420=11340 số.

Lời giải

Chọn C.

Gọi số cần tìm của tập S có dạng abc. Trong đó a,b,c Aa0ab; bc; ca.

Khi đó

  • Số cách chọn chữ số a có 5 cách chọn vì a0.
  • Số cách chọn chữ số b có  5 cách chọn vì ba.
  • Số cách chọn chữ số c có 4 cách chọn vì  cacb.

Do đó tập S có 5.5.4 = 100 phần tử.

Không gian mẫu là chọn ngẫu nhiên  số từ tập S.

Suy ra số phần tử của không gian mẫu là Ω=C1001=100.

Gọi X là biến cố Số được chọn có chữ số cuối gấp đôi chữ số đầu .

Khi đó ta có các bộ số là 1b2 hoặc 2b4 thỏa mãn biến cố X và cứ mỗi bộ thì b có  4 cách chọn nên có tất cả 8 số thỏa yêu cầu.

Suy ra số phần tử của biến cố X là ΩX=8.

Vậy xác suất cần tính P(X)=ΩXΩ=8100=225.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. a15=C1010.C105.35+C109.C96.33+C108.C87.3.

B. a15=C1010.C105.25+C109.C96.26+C108.C87.27.

C. a15=C1010.C105.25+C109.C96.33.26+C108.C87.27.

D.a15=C1010.C105.35.25+C109.C96.26+C108.C87.3.27.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP