Câu hỏi:
10/03/2021 5,546Một cửa hàng có 3 gói bim bim và 5 cốc mì ăn liền cần xếp vào giá. Hỏi có bao nhiêu cách xếp sao cho đầu hàng và cuối hàng cùng một loại?
Quảng cáo
Trả lời:
Chọn đáp án D
Đối với bài toán ta xét 2 trường hợp:
+) Đầu hàng và cuối hàng đều là gói bim bim:
Số cách chọn 2 gói bim bim xếp ở vị trí đầu hàng và cuối hàng là: (ở đây ta xem cách xếp 1 gói bim bim A ở đầu hàng, gói bim bim B ở cuối hàng với cách xếp gói bim bim A ở cuối hàng còn gói bim bim B ở đầu hàng là khác nhau).
Lúc này, ta còn lại 1 gói bim bim và 5 cốc mì ăn liền, số cách xếp 6 món đồ này vào 1 hàng là: 6!.
Vậy số cách xếp thỏa yêu cầu đề là:
+) Đầu hàng và cuối hàng đều là cốc mì ăn liền:
Số cách chọn 2 cốc mì ăn liền xếp ở vị trí đầu hàng và cuối hàng là: .
Lúc này, còn lại 3 cốc mì ăn liền và 3 gói bim bim, số cách xếp 6 người này vào 1 hàng là: 6!.
Vậy số cách xếp thỏa yêu cầu đề là:
Số cách xếp tất cả là: .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án cần chọn là: D
Gọi số tự nhiên thỏa mãn bài toán có dạng .
Xét trường hợp có cả chữ số 0 đứng đầu.
Số cách chọn vị trí cho chữ số 2 là
Số cách chọn vị trí cho chữ số 3 là
Số cách chọn 2 chữ số còn lại trong tập hợp {0;1;4;5;6;7;8;9} để xếp vào hai vị trí cuối là
Do đó có số.
Xét trường hợp chữ số 0 đứng đầu.
a=0 nên có 1 cách chọn.
Số cách chọn vị trí cho chữ số 2 là
Số cách chọn vị trí cho chữ số 3 là
Số cách chọn chữ số cuối trong tập hợp {1;4;5;6;7;8;9} là 7 cách.
Do đó có số.
Vậy có 11760−420=11340 số.
Lời giải
Chọn C.
Gọi số cần tìm của tập S có dạng . Trong đó .
Khi đó
- Số cách chọn chữ số a có 5 cách chọn vì .
- Số cách chọn chữ số b có 5 cách chọn vì .
- Số cách chọn chữ số c có 4 cách chọn vì và .
Do đó tập S có 5.5.4 = 100 phần tử.
Không gian mẫu là chọn ngẫu nhiên số từ tập .
Suy ra số phần tử của không gian mẫu là .
Gọi X là biến cố Số được chọn có chữ số cuối gấp đôi chữ số đầu .
Khi đó ta có các bộ số là hoặc thỏa mãn biến cố X và cứ mỗi bộ thì b có 4 cách chọn nên có tất cả 8 số thỏa yêu cầu.
Suy ra số phần tử của biến cố X là .
Vậy xác suất cần tính .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.