Câu hỏi:

08/05/2021 3,088

Cho tam giác ABC, AB = AC = 10cm, BC = 12cm. Gọi I là giao điểm của các đường phân giác của tam giác ABC. Tính BI?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

Ta có: AB = AC = 10cm

Suy ra ΔABC cân tại A

Có I là giao các đường phân giác của ΔABC

Suy ra AI, BI là đường phân giác của ΔABC

Gọi H là giao của AI và BC

Khi đó ta có AH vừa là đường phân giác, vừa là đường cao, vừa là đường trung tuyến ứng với cạnh đáy của tam giác cân ABC (tính chất tam giác cân).

=> H là trung điểm của cạnh BC

BH = HC =BC2=122= 6cm

Áp dụng định lý Pitago trong tam giác ABH vuông tại H, ta có:

AH2 + BH2 = AB2AH2 + 62 = 102AH2 = 100  36 = 64

=> AH = 8

Vì BI là phân giác của tam giác ABH nên: ABBH=AIIH=AHIHIH

106=8IHIH 10IH = 48 – 6IH IH = 3

Áp dụng định lý Pitago trong tam giác BHI vuông tại H, ta có:

BI2= IH2 + BH2BI2 = 32 + 62BI2 = 45BI =35

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Vì MD và ME lần lượt là phân giác của AMB^,AMC^ nên DADB=MAMB,EAEC=MAMC

Mà MB = MC nên DADB=EAEC => DE // BC (định lí Talet đảo)

Vì DE // BC nên DIBM=AIAM=IEMC (hệ quả định lí Talet) mà BM = MC nên DI = IE.

Nên cả A, B đều đúng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP