Câu hỏi:
26/05/2021 709Cho hai điểm A (3; 0), B (0; 4). Phương trình đường tròn (C) có bán kính nhỏ nhất nội tiếp tam giác OAB là
Quảng cáo
Trả lời:
Phương trình đường thẳng AB là
Giả sử đường tròn (C) có tâm I (a, b).
Đường tròn (C) nội tiếp tam giác OAB, suy ra (C) có bán kính nhỏ nhất và tiếp xúc Ox, Oy, AB
⇒ R = d(I, Ox) = d(I, Oy) = d(I, AB)
Vì (C) có bán kính nhỏ nhất nên chọn R = |a| = 1.
Suy ra (C) có tâm I (1; 1) và R = 1 ⇒ (C): (x − 1)2 + (y − 1)2 = 1
Đáp án cần chọn là: C
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi M là trung điểm của BC. Do tam giác ABC cân tại A nên A và M đối xứng nhau qua đường trung bình DN: x + y – 4 = 0. Đường thẳng AM ⊥ DN và đi qua A có phương trình x – y = 0.
I = d ∩ AM ⇒ Tọa độ điểm I là nghiệm của hệ
Đường thẳng BC đi qua M và song song với DN có phương trình x + y + 4 = 0 ⇒ Tọa độ đỉnh B có dạng B (t; −4 − t), C đối xứng với B qua M ⇒ C (−4 − t; t)
Lời giải
Giả sử đường tròn có tâm I (a; b)
Vì đường tròn tiếp xúc với đường thẳng (d): 2x + y – 3 = 0 tại B (1; 1) nên ta có
Mà
nên ta có
1(a − 1) − 2(b − 1) = 0 ⇔ a − 2b + 1 = 0 (1)
Vì đường tròn qua A (3; 3) nên ta có R = IA = IB.
IA = IB ⇔ (a − 3)2 + (b − 3)2 = (a − 1)2 + (b − 1)2
⇔ −4a − 4b + 16 = 0
⇔ a + b = 4 (2)
Từ (1) và (2) ta có hệ
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.