Câu hỏi:
31/05/2021 6,860Quảng cáo
Trả lời:
Vì chu vi hinh thoi là 16cm nên cạnh hình thoi có độ dài 24 : 4 = 6cm.
Suy ra AD = 6cm
Xét tam giác AHD vuông tại H có AH = AD => = 300 (tính chất)
Suy ra = 1800 - = 1800 – 300 = 1500 (vì ABCD là hình thoi)
Nên hình thoi ABCD có = 300; = 1500 (vì hai góc đối bằng nhau)
Lại có: CA là tia phân giác (tính chất hình thoi)
Nên = = .1500 = 750
Đáp án cần chọn là: D
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tam giác EAM vuông tại E, EI là đường trung tuyến nên: EI = IM = IA = AM.
Từ EI = IA suy ra tam giác IAE cân tại I, từ đó có: (góc ngoài của tam giác).
Chứng minh tương tự với tam giác vuông ADM ta có: = 2, DI = AM.
Do đó: EI = DI ( = AM);
Tam giác IED cân (vì EI = DI) có: = 600 nên là tam giác đều, từ đó EI = ED = ID.
Tương tự tam giác IDF đều suy ra: ID = DF = IF.
Do đó EI = ED = DF = IF. Suy ra tứ giác EIFD là hình thoi.
Suy ra K là trung điểm chung của EF và ID.
Gọi N là trung điểm của AH.
Tam giác ABC đều có H là trực tâm của tam giác ABC nên H cũng là trọng tâm tam giác.
Do đó AN = NH = HD.
Ta có: MH // IN (vì IN là đường trung bình của tam giác AMH) và KH // IN (vì KH là đường trung bình của tam giác DIN).
Từ H ta chỉ vẽ được một đường thẳng song song với IN (tiên đề Ơ – clit) nên M, H, K thẳng hang.
Vậy D sai vì ID = IF.
Đáp án cần chọn là: D
Lời giải
Từ giả thiết ta có MP, NP, NQ, QM lần lượt là các đường trung bình của các tam giác BDE, ECD, DCB, BEC (định nghĩa đường trung bình).
Đặt BD = CE = 2a
Áp dụng định lý đường trung bình và giả thiết vào bốn tam giác trên ta được:
MP = BD = a; NQ = BD = a; NP = CE = a; MQ = CE = a.
Suy ra MN = NP = PQ = QM
Tứ giác MNPQ có bốn cạnh bằng nhau nên là hình thoi.
Áp dụng tính chất về đường chéo vào hình thoi MNPQ ta được: MN ⊥ PQ
Đáp án cần chọn là: C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.