Câu hỏi:

17/09/2019 12,178

Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (2; -3; 7), B (0; 4; -3) và C (4; 2; 5). Biết điểm Mx0;y0;z0 nằm trên (Oxy) sao cho MA+MB+MC có giá trị nhỏ nhất. Khi đó tổng P=x0+y0+z0 bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn C

Gọi G là trọng tâm tam giác ABC => G = (2; 1; 3)

Khi đó 

Nên  có giá trị nhỏ nhất khi và chỉ khi MG ngắn nhất, khi đó M là hình chiếu vuông góc của G (2; 1; 3) trên (Oxy)

Do đó M (2; 1; 0)

Vậy 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Lời giải

Chọn B

 

Mặt cầu có tâm I (1; 2; 3) bán kính là R = 4. Ta có A, B nằm trong mặt cầu.

Gọi K là hình chiếu của I trên AB và H là hình chiếu của I lên thiết diện.

Ta có diện tích thiết diện bằng 

Do đó diện tích thiết diện nhỏ nhất khi IH lớn nhất. Mà  suy ra (P) qua A, B và vuông góc với IK. Ta có IA = IB = √5 suy ra K là trung điểm của AB

Vậy K (0; 1; 2) và  

Vậy (P): (x - 1) + y + (z- 2) = 0 => - x - y - z + 3  = 0. Vậy T = -3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP