Câu hỏi:

11/07/2024 5,289

Cho tam giác ABC cân tại A có A^=120°. Trên cạnh BC lấy hai điểm M, N sao cho MA, NA lần lượt vuông góc với AB, AC. Chứng minh rằng:

a) ΔBAM=ΔCAN;

b) Các tam giác ANB, AMC lần lượt cân tại N, M.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho tam giác ABC cân tại A có góc A = 120 độ. Trên cạnh BC lấy hai điểm M, N sao cho MA, NA lần lượt vuông góc với AB, AC (ảnh 1)

a) Do MAAB,NAAC nên tam giác BAM vuông tại A, tam giác CAN vuông tại A.

Do tam giác ABC cân tại A nên AB = AC, ABC^=ACB^ hay ABM^=ACN^.

Xét hai tam giác BAM vuông tại A và CAN vuông tại A có:

ABM^=ACN^ (chứng minh trên).

AB = AC (chứng minh trên).

Vậy ΔBAM=ΔCAN (góc nhọn – cạnh góc vuông).

b) Xét tam giác ABC có: ABC^+ACB^+BAC^=180°.

ABC^=ACB^ (do tam giác ABC cân tại A).

Do đó 2ABC^=180°BAC^=180°120°=60°.

Do đó ABC^=ACB^=30°.

Do ΔBAM=ΔCAN (chứng minh ở ý a) nên AM = AN (2 cạnh tương ứng).

Do đó tam giác AMN cân tại A (1).

Xét tam giác CAN vuông tại A có ANC^+ACN^=90° (trong tam giác vuông, hai góc nhọn phụ nhau).

Do đó ANC^=90°ACN^=90°30°=60°.

Từ (1) và (2) suy ra tam giác AMN đều.

Do đó MAN^=60°.

Ta có: MAN^+NAB^=MAB^

Suy ra NAB^=MAB^MAN^=90°60°=30°.

Do đó NAB^=ABN^=30°.

Suy ra tam giác ANB cân tại N.

Ta có: MAN^+MAC^=NAC^

Suy ra MAC^=NAC^MAN^=90°60°=30°.

Do đó MAC^=MCA^=30°.

Suy ra tam giác AMC cân tại M.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A có B^=60°. Trên cạnh BC lấy điểm M sao cho CAM^=30°. Chứng minh rằng:

a) Tam giác CAM cân tại M;

b) Tam giác BAM là tam giác đều;

c) M là trung điểm của đoạn thẳng BC.

Xem đáp án » 11/07/2024 7,603

Câu 2:

Cho M, N là hai điểm phân biệt nằm trên đường trung trực của đoạn thẳng AB sao cho AM = AN. Chứng minh rằng MB = NB và góc AMB bằng góc ANB.

Xem đáp án » 11/07/2024 1,626

Câu 3:

Trong Hình 4.76, có AM = BM, AN = BN. Chứng minh rằng MAN^=MBN^.

Trong Hình 4.76, có AM = BM, AN = BN. Chứng minh rằng (ảnh 1)

 

Xem đáp án » 11/07/2024 1,287

Câu 4:

Trong Hình 4.77, có AO = BO, OAM^=OBN^. Chứng minh rằng AM = BN.

Trong Hình 4.77, có AO = BO, góc OAM = góc OBN. Chứng minh rằng AM = BN (ảnh 1)

Xem đáp án » 11/07/2024 1,250

Câu 5:

Trong Hình 4.78, ta có AN = BM, BAN^=ABM^. Chứng minh rằng BAM^=ABN^.

Trong Hình 4.78, ta có AN = BM, góc BAN = góc ABM. Chứng minh rằng (ảnh 1)

Xem đáp án » 11/07/2024 1,127

Câu 6:

Tính các số đo x, y trong các tam giác dưới đây (H.4.75).

Tính các số đo x, y trong các tam giác dưới đây (H.4.75) (ảnh 1)

 

Xem đáp án » 11/07/2024 687

Bình luận


Bình luận

Khánh Linh Trần Thị
21:54 - 03/02/2023

Cm tam giác ABN = tam giác ACM

Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store