Câu hỏi:

11/07/2024 7,425

Cho tam giác ABC vuông tại A có B^=60°. Trên cạnh BC lấy điểm M sao cho CAM^=30°. Chứng minh rằng:

a) Tam giác CAM cân tại M;

b) Tam giác BAM là tam giác đều;

c) M là trung điểm của đoạn thẳng BC.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho tam giác ABC vuông tại A có góc B = 60 độ. Trên cạnh BC lấy điểm M sao cho (ảnh 1)

a) Xét tam giác ABC vuông tại A có ABC^+ACB^=90° (trong tam giác vuông, hai góc nhọn phụ nhau).

Do đó ACB^=90°ABC^=90°60°=30°.

ACM^=ACB^ nên ACM^=30°.

Tam giác CAM có ACM^=CAM^=30° nên tam giác CAM cân tại M.

Vậy tam giác CAM cân tại M.

b) Có BAC^=BAM^+MAC^.

 Do đó BAM^=BAC^MAC^=90°30°=60°.

ABM^=ABC^ nên ABM^=60°.

Xét tam giác BAM có ABM^+BAM^+BMA^=180°.

Do đó BMA^=180°ABM^BAM^=180°60°60°=60°.

Tam giác BAM có ABM^=BAM^=BMA^=60° nên tam giác BAM là tam giác đều.

Vậy tam giác BAM là tam giác đều.

c) Do tam giác CAM cân tại M nên MA = MC (1).

Do tam giác BAM là tam giác đều nên MA = MB (2).

Từ (1) và (2) ta có MB = MC.

Mà M nằm giữa B và C nên M là trung điểm của BC.

Vậy M là trung điểm của BC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC cân tại A có A^=120°. Trên cạnh BC lấy hai điểm M, N sao cho MA, NA lần lượt vuông góc với AB, AC. Chứng minh rằng:

a) ΔBAM=ΔCAN;

b) Các tam giác ANB, AMC lần lượt cân tại N, M.

Xem đáp án » 11/07/2024 4,909

Câu 2:

Cho M, N là hai điểm phân biệt nằm trên đường trung trực của đoạn thẳng AB sao cho AM = AN. Chứng minh rằng MB = NB và góc AMB bằng góc ANB.

Xem đáp án » 11/07/2024 1,535

Câu 3:

Trong Hình 4.76, có AM = BM, AN = BN. Chứng minh rằng MAN^=MBN^.

Trong Hình 4.76, có AM = BM, AN = BN. Chứng minh rằng (ảnh 1)

 

Xem đáp án » 11/07/2024 1,166

Câu 4:

Trong Hình 4.77, có AO = BO, OAM^=OBN^. Chứng minh rằng AM = BN.

Trong Hình 4.77, có AO = BO, góc OAM = góc OBN. Chứng minh rằng AM = BN (ảnh 1)

Xem đáp án » 11/07/2024 1,111

Câu 5:

Trong Hình 4.78, ta có AN = BM, BAN^=ABM^. Chứng minh rằng BAM^=ABN^.

Trong Hình 4.78, ta có AN = BM, góc BAN = góc ABM. Chứng minh rằng (ảnh 1)

Xem đáp án » 11/07/2024 984

Câu 6:

Tính các số đo x, y trong các tam giác dưới đây (H.4.75).

Tính các số đo x, y trong các tam giác dưới đây (H.4.75) (ảnh 1)

 

Xem đáp án » 11/07/2024 595

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL