Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;-2;6) ,B(0;1;0) và mặt cầu . Mặt phẳng (P): ax+by+cz-2=0 đi qua A, B và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính T=a+b+c.
Câu hỏi trong đề: Bài tập Hình học không gian OXYZ cơ bản, nâng cao có lời giải !!
Quảng cáo
Trả lời:
Đáp án A
Phương pháp:
+) Để mặt phẳng (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất thì
+) Gọi H và K lần lượt là chân đường vuông góc của I trên (P) và trên đường thẳng AB. Ta có: HIIK
Cách giải:
Khi đó mặt phẳng (P) có dạng :
Mặt cầu (S) có tâm I(1;2;3), bán kính R = 5
Gọi H và K lần lượt là chân đường vuông góc của I trên (P) và trên đường thẳng AB. Ta có : HIIK
Để mặt phẳng (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất thì
=>Phương trình đường thẳng AB:
Vì
là 1 VTPT của (P)
=> và vec tơ pháp tuyến cùng phương
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Phương pháp: Sử dụng công thức viết phương trình mặt phẳng dạng đoạn chắn: Mặt phẳng (ABC) đi qua các điểm A(a;0;0), B(0;b;0), C(0;0;c) có phương trình
Cách giải: Phương trình mặt phẳng (ABC):
Lời giải
Đáp án D
Do mặt phẳng (Q) chứa A,B và vuông góc với mặt phẳng (P)
Do đó (Q): 3x-2y-z-3=0
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.