Trong không gian Oxyz, cho hai mặt phẳng (P): 2x-y+3z-1=0 và mặt phẳng (Q): 4x-2y+6z-1=0. Trong các mệnh đề sau, mệnh đề nào đúng?
A. (P) và (Q) vuông góc với nhau.
B. (P) và (Q) trùng nhau.
C. (P) và (Q) cắt nhau.
D. (P) và (Q) song song với nhau.
Quảng cáo
Trả lời:

Đáp án D
Phương pháp: Xét hai mặt phẳng
+) (P) và (Q) cắt nhau khi và chỉ khi chúng không song song hay trùng nhau.
Cách giải: Ta có: (P): 2x-y+3z-1=0 và (Q): 4x-2y+6z-1=0
=> (P) và (Q) song song với nhau.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. 2y+3z-10=0
B.2x+3z-11=0
C. 2y+3z-12=0
D. 2y+3z-11=0
Lời giải
Đáp án D
Ta có:
Khi đó:
Suy ra (Q): 2y+3z-11=0
Câu 2
A. (Q): 2y+z=0
B. (Q): 2x-z=0
C. (Q): y-2z=0
D. (Q): 2y-z=0
Lời giải
Đáp án D
Phương pháp:
Trong đó
d: khoảng cách từ tâm O đến mặt phẳng (P),
r: bán kính đường tròn là giao tuyến của mặt cầu (S) và mặt phẳng (P)
R: bán kính hình cầu.
Cách giải:
=> (S) có tâm I(3;-2;1) bán kính R = 3
(Q) cắt (S) theo giao tuyến là một đường tròn bán kính r = 2
Ta có
là một VTCP (Q)
Khi đó
Phương trình mặt phẳng (Q) đi qua O(0;0;0) và có VTPT =(0;b;c) là:
Khoảng cách từ tâm I đến (Q):
Phương trình mặt phẳng (Q): 2y -z =0
Câu 3
A. 3x+y-2z-2=0
B. 3x-2z=0
C. 3x-2z-1=0
D. 3x-y+2z-4=0
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. x+2y+4z+1=0
B. 4x+2y+z-8=0
C. 2x-y-z-1=0
D. 4x+2y+z+1=0
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.