Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;4;5), B(3;4;0), C(2;-1;0) và mặt phẳng (P): 3x-3y-2z-12=0. Gọi M(a;b;c) thuộc (P) sao cho đạt giá trị nhỏ nhất. Tính tổng a+b+c
Câu hỏi trong đề: Bài tập Hình học không gian OXYZ cơ bản, nâng cao có lời giải !!
Quảng cáo
Trả lời:
Đáp án A
Phương pháp
+) Gọi I là điểm thỏa mãn hệ thức tìm tọa độ điểm I.
+) Chứng minh nhỏ nhất <=> MI nhỏ nhất.
+) MI nhỏ nhất <=> M là hình chiếu của I trên (P)
Cách giải
Gọi là điểm thỏa mãn ta có hệ phương trình:
Ta có:
Khi đó M là hình chiếu của I trên (P)
Gọi d là đường thẳng đi qua I và vuông góc với (P)
M(P) Suy ra
=> 3(3t+2) - 3(-3t+1)-2(-2t+1)-12=0
=> a+ b+ c =3
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án A
Mặt phẳng
chứa trục Ox <=> a=d =0
Lời giải
Đáp án C
Phương pháp
Gọi H là hình chiếu của B trên mặt phẳng (Q) đi qua A và song song với (P). Khi đó
Cách giải
Gọi (Q) là mặt phẳng đi qua A và song song với (P) ta tìm được phương trình mặt phẳng (Q): (P): x-2y+2z-5=0, khi đó d (Q)
Gọi H là hình chiếu của B trên (Q) ta có
Phương trình đường thẳng d’ đi qua B và vuông góc với (Q) là
Vậy phương trình đường thẳng d cần tìm là d:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.