Câu hỏi:
13/07/2024 12,805Câu hỏi trong đề: Bài tập Định lí côsin và định lí sin có đáp án !!
Quảng cáo
Trả lời:
Quan sát hai tam giác trên, ta thấy tam giác thứ nhất là tam giác vuông nên ta có thể dùng định lí Pythagore để tìm độ dài cạnh chưa biết.
Ta có tam giác ABC vuông tại A nên BC2 = AB2 + AC2 = 42 + 32 = 25 ⇒ BC = 5.
Tam giác thứ hai ta chưa biết cách tìm.
Sau khi học xong bài 2. Định lí côsin và định lí sin ta sẽ giải bài này như sau:
- Áp dụng định lí côsin cho tam giác ABC ta có:
BC2 = AB2 +AC2 – 2.AB.AC.cosA = 42 +32 – 2.4.3.cos90° = 25;
⇒ BC = = 5.
Vậy BC = 5.
- Áp dụng định lí côsin cho tam giác MNP ta có:
NP2 = MN2 + MP2 – 2.MN.MP.cosM = 42 + 32 – 2.4.3.cos60° = 13;
⇒ NP = ≈ 3,6.
Vậy NP ≈ 3,6.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Áp dụng công thức tính diện tích tam giác ta có:
Vậy diện tích tam giác ABC là 20,8 (đơn vị diện tích).
b) Áp dụng định lí côsin cho tam giác ABC ta có:
BC2 = AB2 + AC2 – 2.AB.AC.cosA = 62 + 82 – 2.6.8.cos60° = 52
⇒ BC = ≈ 7,2.
Mặt khác diện tích tam giác ABC:
Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên ta có IA = IB = IC = R = 4,2.
Nửa chu vi của tam giác IBC:
Áp dụng công thức Heron ta tính được diện tích tam giác IBC:
Vậy diện tích tam giác IBC là 7,8 (đơn vị diện tích).
Lời giải
Áp dụng hệ quả của định lí côsin cho tam giác ABC ta có:
⇒ ≈ 82°.
⇒ = 60°.
Tam giác ABC có
Vậy các góc của tam giác ABC là: ≈ 82°, = 60°; = 38°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.