Câu hỏi:
13/07/2024 1,025a) Cho tam giác ABC không phải là tam giác vuông với góc A nhọn và . Vẽ đường cao CD và đặt tên các độ dài như trong Hình 1.
Hãy thay ? bằng chữ cái thích hợp để chứng minh công thức a2 = b2 + c2 – 2bccosA theo gợi ý sau:
Xét tam giác vuông BCD, ta có: a2 = d2 + (c – x)2 = d2 + x2 + c2 – 2xc. (1)
Xét tam giác vuông ACD, ta có: b2 = d2 + x2 ⇒ d2 = b2 – x2 (2)
cosA = ⇒ ? = bcosA. (3)
Thay (2) và (3) vào (1), ta có: a2 = b2 + c2 – 2bccosA.
Lưu ý : Nếu thì ta vẽ đường cao BD và chứng minh tương tự.
b) Cho tam giác ABC với góc A tù. Làm tương tự như trên, chứng minh rằng ta cũng có:
a2 = b2 + c2 – 2bccosA.
Lưu ý: Vì A tù nên cosA = .
c) Cho tam giác ABC vuông tại A. Hãy chứng tỏ công thức a2 = b2 + c2 – 2bccosA có thể viết là a2 = b2 + c2.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a)
Xét tam giác vuông ACD, ta có: cosA = ⇒ x = bcosA.
Vậy lời giải đúng:
Xét tam giác vuông BCD, ta có: a2 = d2 + (c – x)2 = d2 + x2 + c2 – 2xc. (1)
Xét tam giác vuông ACD, ta có: b2 = d2 + x2 ⇒ d2 = b2 – x2 (2)
cosA = ⇒ x = bcosA. (3)
Thay (2) và (3) vào (1), ta có : a2 = b2 + c2 – 2bccosA.
b) Với tam giác ABC có góc A tù :
Xét tam giác vuông BCD, ta có: a2 = d2 + (x + c)2 = d2 + x2 + c2 + 2xc. (4)
Xét tam giác vuông ACD, ta có: b2 = d2 + x2 ⇒ d2 = b2 – x2 (5)
cos = .
Do .
Suy ra: cos = cos = – cos =
⇒ cos =
⇒ x = –bcos , tức là x = – bcosA (6)
Thay (5) và (6) vào (4), ta được : a2 = b2 + c2 _ 2bccosA.
Vậy với tam giác ABC có góc A tù ta cũng có : a2 = b2 + c2 – 2bccosA.
c) Với tam giác ABC vuông tại A thì cosA = cos90° = 0.
Suy ra a2 = b2 + c2 – 2bccosA = b2 + c2 – 2bc.0 = b2 + c2.
Vậy a2 = b2 + c2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có AB = 6, AC = 8 và .
a) Tính diện tích tam giác ABC.
b) Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Tính diện tích tam giác IBC.
Câu 2:
Một công viên có dạng hình tam giác với các kích thước như Hình 15. Tính số đo các góc của tam giác đó.
Câu 3:
Tính diện tích một lá cờ hình tam giác cân có độ dài cạnh bên là 90 cm và góc ở đỉnh là 35°.
Câu 4:
Tính diện tích tam giác ABC và bán kính đường tròn ngoại tiếp tam giác ABC trong các trường hợp sau:
a) Các cạnh b = 14, c = 35 và .
b) Các cạnh a = 4, b = 5, c = 3.
Câu 5:
Trong một khu bảo tồn, người ta xây dựng một tháp canh và hai bồn chứa nước A, B để phòng hỏa hoạn. Từ tháp canh, người ta phát hiện đám cháy và số liệu đưa về như Hình 9. Nên dẫn nước từ bồn chứa A hay B để dập tắt đám cháy nhanh hơn ?
Câu 6:
Cho tam giác ABC, biết cạnh a = 152, . Tính các góc, các cạnh còn lại và bán kính đường tròn ngoại tiếp của tam giác đó.
Câu 7:
Tính diện tích một cánh buồm hình tam giác. Biết cánh buồm đó có chiều dài một cạnh là 3,2 m và hai góc kề cạnh đó có số đo là 48° và 105° (Hình 12).
về câu hỏi!