Câu hỏi:
13/07/2024 2,797
a) Cho tam giác ABC không phải là tam giác vuông có BC = a, AC = b; AB = c và R là bán kính đường tròn ngoại tiếp tam giác đó. Vẽ đường kính BD.
i) Tính sin theo a và R.
ii) Tìm mối liên hệ giữa hai góc và . Từ đó chứng minh rằng 2R = .

b) Cho tam giác ABC với góc A vuông. Tính sinA và so sánh a với 2R để chứng tỏ ta vẫn có công thức 2R = .
a) Cho tam giác ABC không phải là tam giác vuông có BC = a, AC = b; AB = c và R là bán kính đường tròn ngoại tiếp tam giác đó. Vẽ đường kính BD.
i) Tính sin theo a và R.
ii) Tìm mối liên hệ giữa hai góc và . Từ đó chứng minh rằng 2R = .
b) Cho tam giác ABC với góc A vuông. Tính sinA và so sánh a với 2R để chứng tỏ ta vẫn có công thức 2R = .
Câu hỏi trong đề: Bài tập Định lí côsin và định lí sin có đáp án !!
Quảng cáo
Trả lời:
a)
i) Do BD là đường kính của đường tròn nên tam giác BCD vuông tại C.
⇒ sin =
Vậy sin = .
ii)
+) Trường hợp tam giác ABC có góc A nhọn:
Hai góc và là hai góc nội tiếp cùng chắn , do đó = .
Suy ra sin = sin =
⇒ 2R = , tức là 2R = .
Vậy 2R = .
+) Trường hợp tam giác ABC có góc A tù:
Tứ giác ABDC nội tiếp đường tròn tâm O nên ta có + =180°;
⇒ = 180° – ;
⇒ sin = sin(180o – )= sin ;
⇒ sin = sin =
⇒ 2R = , tức là 2R = .
Vậy 2R = .
b) Với tam giác ABC vuông tại A. Khi đó BC sẽ là đường kính của đường tròn ngoại tiếp tam giác ABC nên BC = 2R.
⇒ sinA = sin90° = 1 và .
Vậy tam giác ABC vuông tại A thì ta vẫn có công thức 2R = .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Áp dụng công thức tính diện tích tam giác ta có:
Vậy diện tích tam giác ABC là 20,8 (đơn vị diện tích).
b) Áp dụng định lí côsin cho tam giác ABC ta có:
BC2 = AB2 + AC2 – 2.AB.AC.cosA = 62 + 82 – 2.6.8.cos60° = 52
⇒ BC = ≈ 7,2.
Mặt khác diện tích tam giác ABC:
Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên ta có IA = IB = IC = R = 4,2.
Nửa chu vi của tam giác IBC:
Áp dụng công thức Heron ta tính được diện tích tam giác IBC:
Vậy diện tích tam giác IBC là 7,8 (đơn vị diện tích).
Lời giải
Áp dụng hệ quả của định lí côsin cho tam giác ABC ta có:
⇒ ≈ 82°.
⇒ = 60°.
Tam giác ABC có
Vậy các góc của tam giác ABC là: ≈ 82°, = 60°; = 38°.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.