Câu hỏi:

12/07/2024 2,249

Cho tam giác ABC có BC = a, AC = b, AB = c và (I; r) là đường tròn nội tiếp tam giác (Hình 11).

Media VietJack

a) Tính diện tích các tam giác IBC, IAC, IAB theo r và a, b, c.

b) Dùng kết quả trên để chứng minh công thức tính diện tích tam giác ABC: S=r(a+b+c)2

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Diện tích tam giác AIB là SAIB=12rAB=12rc  

Diện tích tam giác AIC là SAIC=12rAC=12rb

Diện tích tam giác BIC là SBIC=12rBC=12ra

b) Diện tích tam giác ABC bằng tổng diện tích của ba tam giác AIB, AIC, BIC.

S=12ra+12rb+12rc=12r(a+b+c)=r(a+b+c)2

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Áp dụng công thức tính diện tích tam giác ta có:

S=12.AC.AB.sinA=12.6.8.sin60o=12.6.8.32=12320,8

 

Vậy diện tích tam giác ABC là 20,8 (đơn vị diện tích).

b) Áp dụng định lí côsin cho tam giác ABC ta có:

BC2 = AB2 + AC2  – 2.AB.AC.cosA = 62 + 82   2.6.8.cos60° = 52

BC = 52 ≈ 7,2.

Mặt khác diện tích tam giác ABC:      

S=AB.AC.BC4RR=AB.AC.BC4S=6.8.524.1234,2

Media VietJack

Vì I là tâm đường tròn ngoại tiếp tam giác ABC nên ta có IA = IB = IC = R = 4,2.

Nửa chu vi của tam giác IBC: 

p=IB+IC+BC2=4,2+4,2+7,22=7,8

Áp dụng công thức Heron ta tính được diện tích tam giác IBC:

S=7,8.(7,84,2).(7,84,2).(7,87,2)60,77,8

Vậy diện tích tam giác IBC là 7,8 (đơn vị diện tích).

Lời giải

Áp dụng hệ quả của định lí côsin cho tam giác ABC ta có:

cosA=AB2+AC2BC22.AB.AC=5002+700280022.500.7000,143

A^  ≈ 82°.

cosB=AB2+BC2AC22.AB.BC=5002+800270022.500.800=0,5

B^  = 60°.

Tam giác ABC có

 A^+B^+C^=180oC^=180o(A^+B^)=180o(82o+60o)=38o

Vậy các góc của tam giác ABC là:  A^≈ 82°, B^  = 60°; C^ = 38°.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP