Câu hỏi:

09/06/2022 764

Cho hàm số y=f(x) liên tục trên  và có bảng biến thiên như sau:
Cho hàm số y=f(x) liên tục trên  và có bảng biến thiên như sau: (ảnh 1)

Khẳng định nào dưới đây sai?

 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Dựa vào bảng biến thiên ta thấy M(0;2)  là điểm cực đại của đồ thị hàm số nên đáp án A sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

. Cho hàm số  y=f(x) liên tục trên R  và có đồ thị như hình vẽ. Số nghiệm thực của phương trình f(2+f(e^x))=1  là: (ảnh 2)

Số nghiệm của phương trình f(2+f(ex))=1  là số giao điểm của đồ thị hàm số y=f(2+f(ex))  và đường thẳng .

Dựa vào đồ thị hàm số ta có:

f(2+f(ex))=1[2+f(ex)=12+f(ex)=x0(2;3) 

 

[f(ex)=3f(ex)=x02(0;1)

Tương tự ta có: f(ex)=3[ex=1ex=x1<1 (vo nghiem)x=0  .

 f(ex)=x02(0;1)Phương trình có 3 nghiệm phân biệt khác 0

[ex=a<0 (vo nghiem)ex=b<0 (vo nghiem)ex=c>0x=lnc0S

Vậy phương trình ban đầu có 2 nghiệm phân biệt.

Câu 2

Cho hàm số y=f(x) và hàm số bậc ba y=g(x) có đồ thị như hình vẽ bên. Diện tích phần gạch chéo được tính bởi công thức nào sau đây?
Cho hàm số  y=f(x) và hàm số bậc ba y=g(x)  có đồ thị như hình vẽ bên. Diện tích phần gạch chéo được tính bởi công thức nào sau đây? (ảnh 1)

Lời giải

Đáp án C

Ta có: S=32|f(x)g(x)|dx=31|f(x)g(x)|dx+12|f(x)g(x)|dx

=31[g(x)f(x)]dx+12[f(x)g(x)]dx.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay