Câu hỏi:

13/07/2024 14,482

Cho tam giác ABC có a = 8, b = 10, c = 13.

a) Tam giác ABC có góc tù không?

b) Tính độ dài trung tuyến AM, diện tích tam giác và bán kính đường tròn ngoại tiếp tam giác đó.

c) Lấy điểm D đối xứng với A qua C. Tính độ dài BD.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Áp dụng hệ quả của định lí côsin ta có:

cosC = a2+b2c22ab=82+1021322.8.10=0,03125

⇒ C^91o47'26''

Suy ra C^>90o

Vậy tam giác ABC là tam giác tù.

b) Do AM là đường trung tuyến nên M là trung điểm của BC, tức là MB = MC = BC : 2 = 4.

Media VietJack

Áp dụng định lí côsin cho tam giác ACM ta có:

AM2 = AC2 + CM2 – 2.AC.CM.cosC = 102 + 42 – 2.10.4.cos91°47'26" = 118,5

AM 10,9.

Nửa chu vi của tam giác ABC là :

 p=a+b+c2=8+10+132=15,5

Áp dụng công thức Heron ta có diện tích tam giác ABC là:

S=p(pa)(pb)(pc)=15,5.(15,58).(15,510).(15,513)40

Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC. Khi đó ta có:

S=abc4RR=abc4S=8.10.134.40=6,5

Vậy độ dài đường trung tuyến AM 10,9; diện tích tam giác ABC là 40; bán kính đường tròn ngoại tiếp tam giác ABC là 6,5.

c) Vì D đối xứng với A qua C nên C là trung điểm của AD.

Suy ra AD = 2AC = 2.10 = 20.

Áp dụng hệ quả của định lí côsin cho tam giác ABC ta có:

cosA = b2+c2a22bc=102+132822.10.13=205260=4152

Áp dụng định lí côsin cho tam giác ABD ta có:

BD2 = AD2 + AB2 – 2.AD.AB.cosA = 202 + 132 – 2.20.13.4152 = 159

BD =  159 12,6.

Vậy BD 12,6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Muốn đo chiều cao của một ngọn tháp, người ta lấy hai điểm A, B trên mặt đất có khoảng cách AB = 12 m cùng thẳng hàng với chân C của tháp để đặt hai giác kế. Chân của hai giác kế có chiều cao là h = 1,2 m. Gọi D là đỉnh tháp và hai điểm A1, B1 cùng thẳng hàng với C1 thuộc chiều cao CD của tháp. Người ta đo được DA1C1^=49o, DB1C1^=35o . Tính chiều cao CD của tháp.

Media VietJack

Xem đáp án » 13/07/2024 17,911

Câu 2:

Cho tam giác ABC có A^=120o , b = 8, c = 5. Tính:

a) Cạnh a và các góc B^ , C^ ;

b) Diện tích tam giác ABC;

c) Bán kính đường tròn ngoại tiếp và đường cao AH của tam giác.

Xem đáp án » 13/07/2024 17,746

Câu 3:

Hai chiếc tàu thủy P và Q cách nhau 300 m và thẳng hàng với chân B của tháp hải đăng AB ở trên bờ biển (Hình 2). Từ P và Q, người ta nhìn thấy tháp hải đăng AB dưới các góc BPA^=35o BQA^=48o . Tính chiều cao của tháp hải đăng đó.

Media VietJack

Xem đáp án » 13/07/2024 14,434

Câu 4:

Cho tam giác ABC có a = 15, b = 20, c = 25.

a) Tính diện tích tam giác ABC.

b) Tính bán kính đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 13/07/2024 12,670

Câu 5:

Cho tam giác ABC. Biết a = 49,4; b = 26,4; C^=47o20' . Tính hai góc A^; B^ và cạnh c.

Xem đáp án » 13/07/2024 11,912

Câu 6:

Tính khoảng cách AB giữa hai nóc tòa cao ốc. Cho biết khoảng cách từ hai điểm đó đến một vệ tinh viễn thông lần lượt là 370 km, 350 km và góc nhìn từ vệ tinh đến A và B là 2,1°.
 
Media VietJack

Xem đáp án » 13/07/2024 8,033

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store