Câu hỏi:
13/07/2024 17,746Cho tam giác ABC có , b = 8, c = 5. Tính:
a) Cạnh a và các góc , ;
b) Diện tích tam giác ABC;
c) Bán kính đường tròn ngoại tiếp và đường cao AH của tam giác.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Áp dụng định lí côsin ta có:
a2 = b2 + c2 – 2bccosA = 82 + 52 – 2.8.5.cos120° = 129
⇒ a =
Áp dụng hệ quả của định lí côsin ta có:
cosB =
⇒
Tam giác ABC có:
Vậy a ≈ 11,4; ; .
b) Nửa chu vi tam giác ABC là :
Áp dụng công thức Heron ta có diện tích tam giác ABC:
Vậy diện tích tam giác ABC khoảng 17,2 (đơn vị diện tích).
c) Ta có diện tích tam giác ABC:
Vậy bán kính đường tròn ngoại tiếp tam giác ABC khoảng 6,6 (đơn vị độ dài).
Gọi ha là độ dài đường cao của tam giác ABC hạ từ đỉnh A, tức là ha = AH.
Khi đó
⇒ AH = ha ≈ 3.
Vậy AH ≈ 3.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Muốn đo chiều cao của một ngọn tháp, người ta lấy hai điểm A, B trên mặt đất có khoảng cách AB = 12 m cùng thẳng hàng với chân C của tháp để đặt hai giác kế. Chân của hai giác kế có chiều cao là h = 1,2 m. Gọi D là đỉnh tháp và hai điểm A1, B1 cùng thẳng hàng với C1 thuộc chiều cao CD của tháp. Người ta đo được . Tính chiều cao CD của tháp.
Câu 2:
Cho tam giác ABC có a = 8, b = 10, c = 13.
a) Tam giác ABC có góc tù không?
b) Tính độ dài trung tuyến AM, diện tích tam giác và bán kính đường tròn ngoại tiếp tam giác đó.
c) Lấy điểm D đối xứng với A qua C. Tính độ dài BD.
Câu 3:
Hai chiếc tàu thủy P và Q cách nhau 300 m và thẳng hàng với chân B của tháp hải đăng AB ở trên bờ biển (Hình 2). Từ P và Q, người ta nhìn thấy tháp hải đăng AB dưới các góc và . Tính chiều cao của tháp hải đăng đó.
Câu 4:
Cho tam giác ABC có a = 15, b = 20, c = 25.
a) Tính diện tích tam giác ABC.
b) Tính bán kính đường tròn ngoại tiếp tam giác ABC.
Câu 5:
Cho tam giác ABC. Biết a = 49,4; b = 26,4; . Tính hai góc và cạnh c.
Câu 6:
về câu hỏi!