Câu hỏi:
11/06/2022 412Chứng minh rằng với mọi số tự nhiên n, ta có 102n + 1 + 1 chia hết cho 11.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác
Quảng cáo
Trả lời:
Ta chứng minh bằng quy nạp theo n.
Bước 1. Với n = 0 ta có 102.0 + 1 + 1 = 11 ⁝ 11.
Như vậy khẳng định đúng cho trường hợp n = 0.
Bước 2. Giả sử khẳng định đúng với n = k, tức là ta có: 102k + 1 + 1 chia hết cho 11.
Ta sẽ chứng minh rằng khẳng định cũng đủng với n = k + 1, nghĩa là ta sẽ chứng minh: 102(k + 1) + 1 + 1 chia hết cho 11.
Thật vậy, ta có:
102(k + 1) + 1 + 1
= 10(2k + 1) + 2 + 1
= 100.102k + 1 + 1
= 100.102k + 1 + 100 – 100 + 1
= 100(102k + 1 + 1) – 100 + 1
= 100(102k + 1 + 1) – 99.
Vì 102k + 1 + 1 và 99 đều chia hết cho 11 nên 100(102k + 1 + 1) – 99 chia hết cho 11. Do đó 102(k + 1) + 1 + 1 chia hết cho 11.
Vậy khẳng định đúng với mọi số tự nhiên n.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm hệ số của x9 trong khai triển thành đa thức của (2x – 3)11.
Câu 3:
Tìm giá trị lớn nhất trong các giá trị
Áp dụng: Tìm hệ số lớn nhất của khai triển (a + b)n, biết rằng tổng các hệ số của khai triển bằng 4096.
Câu 4:
Tìm số hạng có giá trị lớn nhất của khai triển (p + q)n với p > 0, q > 0, p + q = 1.
Câu 6:
Chứng minh rằng với mọi số tự nhiên , ta có
2.21 + 3.22 + 4.23 + ... + (n + 1).2n = n.2n + 1.
Câu 7:
Đặt .
a) Tính S1, S2, S3.
b) Dự đoán công thức tính tổng Sn và chứng minh nó bằng quy nạp.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
75 câu trắc nghiệm Vectơ nâng cao (P1)
Bài tập Xác định tính hợp lí của dữ liệu trong bảng thống kê (có lời giải)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Số gần đúng và sai số có đáp án
Đề thi Giữa kì 1 Toán 10 Kết nối tri thức có đáp án - Đề 1
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Hàm số có đáp án
về câu hỏi!