Câu hỏi:

13/07/2024 1,017

Chứng minh với mọi n *, (1+2)n, (12)n lần lượt viết được ở dạng an+bn2, anbn2, trong đó an, bn là các số nguyên dương.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+) Khi n = 1, ta có:

(1+2)1=1+2=1+1.2 a1 = 1, b1 = 1.

Vậy mệnh đề đúng với n = 1.

+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: (1+2)k+1 viết được dưới dạng ak+1+bk+12, trong đó ak + 1, bk + 1 là các số nguyên dương.

Thật vậy, theo giả thiết quy nạp ta có:

(1+2)k=ak+bk2, với ak, bk là các số nguyên dương.

Khi đó:

(1+2)k+1=(1+2)k1+2

=ak+bk21+2

=ak.1+bk2.1+ak.2+bk2.2

=ak+bk2+ak2+2bk

=ak+2bk+ak+bk2.

Vì ak, bk là các số nguyên dương nên ak + 2bk và ak + bk cũng là các số nguyên dương.

Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n  *.

+) Theo chứng minh trên ta có:

Với mọi  * thì (1+2)n=anbn2 với an, bn là các số nguyên dương.

Chứng minh tương tự ta được:

Với mọi  * thì (12)n=cndn2 với cn, dn là các số nguyên dương.

Giờ ta chứng minh an = cn và bn = dn với mọi  *.

Ta có: (1+2)n12n=1+212n=1n

an+bn2cndn2=1n

ancn2bndn+bncnandn2=1n

ancn2bndn=1n  1bncnandn=0  2.

Từ (2) ta suy ra andn=bncnancn=bndn=k với k > 0 (vì an, bn, cn, dn là các số nguyên dương)

an=kcn,bn=kdn. Thế vào (1) ta được:

kcncn2kdndn=1nkcn22dn2=1n

1    kk=1an = cn và bn = dn.

Vậy ta có điều phải chứng minh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1) với n  *.

Xem đáp án » 13/07/2024 11,126

Câu 2:

Chứng minh 16n15n1 chia hết cho 225 với mọi n*.

Xem đáp án » 13/07/2024 6,118

Câu 3:

Cho Sn = 1 + 2 + 22 +... + 2n và Tn = 2n + 1 – 1, với n  *.

a) So sánh S1 và T1; S2 và T2; S3 và T3.

b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.

Xem đáp án » 13/07/2024 5,516

Câu 4:

Cho Sn=1+12+122++12n Tn=212n, với n  *.

a) So sánh S1 và T1; S2 và T2; S3 và T3.

b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.

Xem đáp án » 13/07/2024 4,545

Câu 5:

Chứng minh nn > (n + 1)n – 1 với n  *, n ≥ 2.

Xem đáp án » 13/07/2024 3,531

Câu 6:

Cho q là số thực khác 1. Chứng minh: 1 + q + q2 +... + qn – 1 = 1qn1q, với n  *.

Xem đáp án » 13/07/2024 3,002

Câu 7:

Cho Sn=11.5+15.9+19.13++1(4n3)(4n+1), với n  *.

a) Tính S1, S2, S3, S4.

b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.

Xem đáp án » 13/07/2024 2,806

Bình luận


Bình luận