Bài tập Chuyên đề Phương pháp quy nạp toán học có đáp án
28 người thi tuần này 4.6 1.1 K lượt thi 15 câu hỏi
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
20 câu trắc nghiệm Toán 10 Cánh diều Bài tập cuối chương 7 (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường trò (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 3. Phương trình đường thẳn (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài 1. Tọa độ của vectơ (Đúng sai - trả lời ngắn) có đáp án
20 câu trắc nghiệm Toán 10 Cánh diều Bài ôn tập cuối chương 6 (Đúng sai - trả lời ngắn) có đáp án
Danh sách câu hỏi:
Lời giải
a) Ta có P(1): "1 = 12". Mệnh đề này đúng vì 12 = 1.
b) Với k là một số nguyên dương tuỳ ý mà P(k) là mệnh đề đúng thì 1 + 3 + 5 + ... + (2k – 1) = k2.
c) Khi P(k) là mệnh đề đúng. Ta có:
P(k+1) = 1 + 3 + 5 + ... + (2k – 1) + [2(k+1) – 1] = P(k) + [2(k+1) – 1]
= k2 + [2(k+1) – 1] = k2 + (2k + 2 – 1) = k2 + 2k + 1 = (k+1)2
Vậy P(k+1) cũng là mệnh đề đúng.
Lời giải
a)
+) Khi n = 1, ta có:
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là:
Thật vậy, theo giả thiết quy nạp ta có:
Khi đó:
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
b)
+) Khi n = 2, ta có:
Vậy mệnh đề đúng với n = 2.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là:
Thật vậy, theo giả thiết quy nạp ta có:
Khi đó:
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
Lời giải
+) Khi n = 1, ta có:
a1 = 1, b1 = 1.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: viết được dưới dạng trong đó ak + 1, bk + 1 là các số nguyên dương.
Thật vậy, theo giả thiết quy nạp ta có:
với ak, bk là các số nguyên dương.
Khi đó:
Vì ak, bk là các số nguyên dương nên ak + 2bk và ak + bk cũng là các số nguyên dương.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
+) Theo chứng minh trên ta có:
Với mọi n ℕ* thì với an, bn là các số nguyên dương.
Chứng minh tương tự ta được:
Với mọi n ℕ* thì với cn, dn là các số nguyên dương.
Giờ ta chứng minh an = cn và bn = dn với mọi n ℕ*.
Ta có:
Từ (2) ta suy ra với k > 0 (vì an, bn, cn, dn là các số nguyên dương)
Thế vào (1) ta được:
an = cn và bn = dn.
Vậy ta có điều phải chứng minh.
Lời giải
+) Khi n = 1, ta có: 161 – 15n – 1 = 0 ⁝ 225.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: 16k + 1 – 15(k + 1) – 1 chia hết cho 225.
Thật vậy, theo giả thiết quy nạp ta có: 16k – 15k – 1 chia hết cho 225.
Khi đó:
16k + 1 – 15(k + 1) – 1
= 16 . 16k – 15k – 16
= 16 . 16k – (240k – 225k) – 16
= 16 . 16k – 240k + 225k – 16
= 16 . 16k – 240k – 16 + 225k
= 16 (16k – 15k – 1) + 225k
Vì (16k – 15k – 1) và 225k đều chia hết cho 225 nên 16 (16k – 15k – 1) + 225k ⁝ 225, do đó 16k + 1 – 15(k + 1) – 1 ⁝ 225.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
Lời giải
a) S1 = 1 + 21 = 3, S2 = 1 + 2 + 22 = 7, S3 = 1 + 2 + 22 + 23 = 15.
T1 = 21 + 1 – 1 = 3, T2 = 22 + 1 – 1 = 7, T3 = 23 + 1 – 1 = 15.
Vậy S1 = T1; S2 = T2; S3 = T3.
b) Ta dự đoán Sn = Tn với n
ℕ*.
+) Khi n = 1, ta có: S1 = T1.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: Sk + 1 = Tk + 1.
Thật vậy, theo giả thiết quy nạp ta có: Sk = Tk.
Khi đó:
Sk + 1 = 1 + 2 + 22 +... + 2k + 2k + 1
= Sk + 2k + 1
= Tk + 2k + 1
= (2k + 1 – 1) + 2k + 1
= 2 . 2k + 1 – 1
= 2k + 2 – 1
= 2(k + 1) + 1 – 1
=Tk + 1.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi nℕ*. Vậy Sn = Tn = 2n + 1 – 1 với nℕ*.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
