Câu hỏi:

13/07/2024 1,371

Chứng minh với mọi n  *, ta có:

a) 4n + 15n – 1 chia hết cho 9;

b) 13n – 1 chia hết cho 6.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a)

+) Khi n = 1, ta có: 41 + 15 . 1 – 1 = 18 ⁝ 9.

Vậy mệnh đề đúng với n = 1.

+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: 4k + 1 + 15(k+1) – 1 ⁝ 9.

Thật vậy, theo giả thiết quy nạp ta có: 4k + 15k – 1 ⁝ 9.

Khi đó:

4k + 1 + 15(k+1) – 1

= 4 . 4k + 15k + 14

= 4. 4k + (60k – 45k) + (–4 + 18)

= (4 . 4k + 60k – 4) – 45k + 18

= 4 . (4k + 15k – 1) – 45k + 18

4k + 15k – 1, 45k và 18 đều chia hết cho 9 nên 4 . (4k + 15k – 1) – 45k + 18 ⁝ 9, do đó 4k + 1 + 15(k+1) – 1 ⁝ 9.

Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n  *.

b)

+) Khi n = 1, ta có: 131 – 1 = 12 ⁝ 6.

Vậy mệnh đề đúng với n = 1.

+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: 13k + 1 – 1 ⁝ 6.

Thật vậy, theo giả thiết quy nạp ta có: 13k – 1 ⁝ 6.

Khi đó: 

13k + 1 – 1

= 13 . 13k – 1

= 13 . 13k – 13 + 12

= 13 . (13k – 1) + 12

13k – 1 và 12 đều chia hết cho 6 nên 13 . (13k – 1) + 12 ⁝ 6, do đó 13k + 1 – 1 ⁝ 6.

Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi   *.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chứng minh an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1) với n  *.

Xem đáp án » 13/07/2024 13,803

Câu 2:

Chứng minh 16n15n1 chia hết cho 225 với mọi n*.

Xem đáp án » 13/07/2024 6,689

Câu 3:

Cho Sn = 1 + 2 + 22 +... + 2n và Tn = 2n + 1 – 1, với n  *.

a) So sánh S1 và T1; S2 và T2; S3 và T3.

b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.

Xem đáp án » 13/07/2024 6,021

Câu 4:

Cho Sn=1+12+122++12n Tn=212n, với n  *.

a) So sánh S1 và T1; S2 và T2; S3 và T3.

b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.

Xem đáp án » 13/07/2024 4,836

Câu 5:

Cho Sn=11.5+15.9+19.13++1(4n3)(4n+1), với n  *.

a) Tính S1, S2, S3, S4.

b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.

Xem đáp án » 13/07/2024 4,160

Câu 6:

Chứng minh nn > (n + 1)n – 1 với n  *, n ≥ 2.

Xem đáp án » 13/07/2024 3,947

Câu 7:

Cho q là số thực khác 1. Chứng minh: 1 + q + q2 +... + qn – 1 = 1qn1q, với n  *.

Xem đáp án » 13/07/2024 3,426
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua