Câu hỏi:
13/07/2024 761Quan sát Hình 6.
a) Nêu quy luật sắp xếp các chấm đỏ và vàng xen kẽ nhau khi xếp các chấm đó từ góc trên bên trái xuống góc dưới bên phải (tạo thành hinh vuông).
b) Giả sử hình vuông thứ n có mỗi cạnh chứa n chấm. Tinh tổng số chấm được xếp trong hình vuông (kể cả trên cạnh). Chứng minh kết quả đó bằng phương pháp quy nạp toán học.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Số chấm tăng thêm sau mỗi lượt xếp (kể từ lượt đầu tiên) là các số lẻ liên tiếp bắt đầu từ 1.
b) Vì ở hình vuông thứ n có mỗi cạnh chứa n chấm nên tổng số chấm là n2.
Mặt khác, theo cách sắp xếp trên ta lại có tổng số chấm là: 1 + 3 + 5 + ... + (2n – 1).
Như vậy ta sẽ chứng minh mệnh đề
P(n): "1 + 3 + 5 + ... + (2n – 1) = n2 với mọi nℕ*".
+) Khi n = 1, ta có: 1 = 12.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: 1 + 3 + 5 + ... + (2k – 1) + [2(k+1) – 1] = (k + 1)2.
Thật vậy, theo giả thiết quy nạp ta có: 1 + 3 + 5 + ... + (2k – 1) = k2.
Khi đó:
1 + 3 + 5 + ... + (2k – 1) + [2(k+1) – 1]
= [1 + 3 + 5 + ... + (2k – 1)] + [2(k+1) – 1]
= k2 + [2(k+1) – 1]
= k2 + (2k + 2 –1)
= k2 + 2k + 1
= (k + 1)2.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề P(n) đúng với mọi nℕ*.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Chứng minh an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1) với n ℕ*.
Câu 3:
Cho Sn = 1 + 2 + 22 +... + 2n và Tn = 2n + 1 – 1, với n ℕ*.
a) So sánh S1 và T1; S2 và T2; S3 và T3.
b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.Câu 4:
Cho và , với n ℕ*.
a) So sánh S1 và T1; S2 và T2; S3 và T3.
b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.
Câu 6:
Cho q là số thực khác 1. Chứng minh: 1 + q + q2 +... + qn – 1 = với n ℕ*.
Câu 7:
Cho , với n ℕ*.
a) Tính S1, S2, S3, S4.
b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.
về câu hỏi!