Cho tam giác đều màu xanh (Hình thứ nhất).
a) Nêu quy luật chọn tam giác đều màu trắng ở Hình thứ hai.
b) Nêu quy luật chọn các tam giác đều màu trắng ở Hình thứ ba.
c) Nêu quy luật tiếp tục chọn các tam giác đều màu trắng từ Hình thứ tư và các tam giác đều màu trắng ở những hình sau đó.
d) Tinh số tam giác đều màu xanh lần lượt trong các Hình thứ nhất, Hình thú hai, Hình thứ ba.
e) Dự đoán số tam giác đều màu xanh trong Hình thứ n. Chứng minh kết quả đó bằng phương pháp quy nạp toán học.
Cho tam giác đều màu xanh (Hình thứ nhất).
a) Nêu quy luật chọn tam giác đều màu trắng ở Hình thứ hai.
b) Nêu quy luật chọn các tam giác đều màu trắng ở Hình thứ ba.
c) Nêu quy luật tiếp tục chọn các tam giác đều màu trắng từ Hình thứ tư và các tam giác đều màu trắng ở những hình sau đó.
d) Tinh số tam giác đều màu xanh lần lượt trong các Hình thứ nhất, Hình thú hai, Hình thứ ba.
e) Dự đoán số tam giác đều màu xanh trong Hình thứ n. Chứng minh kết quả đó bằng phương pháp quy nạp toán học.
Quảng cáo
Trả lời:
a) Tam giác đều màu trắng ở Hình thứ hai có đỉnh là trung điểm các cạnh của tam giác đều màu xanh ở hình thứ nhất.
b) Giữ nguyên tam giác đều màu trắng ở Hình thứ hai, với mỗi tam giác đều màu xanh ở Hình thứ hai, ta lại chọn các tam giác đều màu trắng như cách ở Hình thứ nhất.
c) Giữ nguyên các tam giác đều màu trắng ở Hình thứ ba, với mỗi tam giác đều màu xanh ở Hình thứ ba, ta lại chọn các tam giác đều màu trắng như cách ở Hình thứ nhất.
Như vậy, ta có quy luật chọn các tam giác đều màu trắng ở hình thứ n:
Giữ nguyên các tam giác đều màu trắng ở Hình thứ n – 1, với mỗi tam giác đều màu xanh ở Hình thứ n – 1, ta lại chọn các tam giác đều màu trắng như cách ở Hình thứ nhất.
d) Số tam giác đều màu xanh ở Hình thứ nhất là: 1.
Số tam giác đều màu xanh ở Hình thứ hai là: 3.
Số tam giác đều màu xanh ở Hình thứ ba là: 9.
e) Dự đoán số tam giác đều màu xanh ở Hình thứ n là: 3n – 1.
Xét mệnh đề P(n): "Số tam giác đều màu xanh ở Hình thứ n là 3n – 1 với nℕ*".
Chứng minh:
+) Khi n = 1, ta có: Số tam giác đều màu xanh ở Hình thứ nhất là: 1.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là:
Số tam giác đều màu xanh ở Hình thứ (k + 1) là 3(k + 1) –1.
Thật vậy, theo giả thiết quy nạp ta có:
Số tam giác đều màu xanh ở Hình thứ k là 3k –1.
Vì với cách chọn như trên, mỗi tam giác đều màu xanh sẽ tạo ta 3 tam giác đều màu xanh mới ở hình tiếp theo nên từ 3k – 1 tam giác đều màu xanh ở Hình thứ k sẽ cho ta 3 . 3k – 1 = 3k = 3(k + 1) – 1 tam giác đều màu xanh ở Hình thứ (k + 1).
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề P(n) đúng với mọi nℕ*
.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
+) Khi n = 1, ta có: a1 – b1 = a – b.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là:
ak + 1 – bk + 1 = (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + ab(k + 1) –2 + b(k + 1) – 1]
Thật vậy, theo giả thiết quy nạp ta có:
ak – bk = (a – b)(ak – 1 + ak – 2b + ... + abk –2 + bk – 1)
Khi đó:
ak + 1 – bk + 1
= a . ak – b . bk
= a . ak – a . bk + a . bk – b . bk
= a . (ak – bk) + bk . (a – b)
= a . (a – b)(ak – 1 + ak – 2b + ... + abk –2 + bk – 1) + bk . (a – b)
= (a – b) . a . (ak – 1 + ak – 2b + ... + abk –2 + bk – 1) + (a – b) . bk
= (a – b)(a . ak – 1 + a . ak – 2b + ... + a . abk – 2 + a . bk – 1) + (a – b) . bk
= (a – b)[a1 + (k – 1) + a1 + (k – 2)b + ... + a2bk – 2 + a . bk – 1) + (a – b) . bk
= (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + a2b(k + 1) – 3 + ab(k + 1) –2] + (a – b) . b(k + 1) – 1
= (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + ab(k + 1) –2 + b(k + 1) – 1].
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề P(n) đúng với mọi nℕ*.
Lời giải
+) Khi n = 1, ta có: 161 – 15n – 1 = 0 ⁝ 225.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: 16k + 1 – 15(k + 1) – 1 chia hết cho 225.
Thật vậy, theo giả thiết quy nạp ta có: 16k – 15k – 1 chia hết cho 225.
Khi đó:
16k + 1 – 15(k + 1) – 1
= 16 . 16k – 15k – 16
= 16 . 16k – (240k – 225k) – 16
= 16 . 16k – 240k + 225k – 16
= 16 . 16k – 240k – 16 + 225k
= 16 (16k – 15k – 1) + 225k
Vì (16k – 15k – 1) và 225k đều chia hết cho 225 nên 16 (16k – 15k – 1) + 225k ⁝ 225, do đó 16k + 1 – 15(k + 1) – 1 ⁝ 225.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.